Difference between revisions of "1962 AHSME Problems/Problem 38"

(Solution)
m (Solution 1)
Line 8: Line 8:
 
<math> \textbf{(A)}\ 3\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 17 </math>
 
<math> \textbf{(A)}\ 3\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 17 </math>
  
==Solution 1==
+
==Solution==
 
Let <math>a^2</math> <math>=</math> original population count, <math>b^2+1</math> <math>=</math> the second population count, and <math>c^2</math> <math>=</math> the third population count  
 
Let <math>a^2</math> <math>=</math> original population count, <math>b^2+1</math> <math>=</math> the second population count, and <math>c^2</math> <math>=</math> the third population count  
 
We first see that <math>a^2 + 100 = b^2 + 1</math> or <math>99</math> <math>=</math> <math>b^2-a^2</math>.
 
We first see that <math>a^2 + 100 = b^2 + 1</math> or <math>99</math> <math>=</math> <math>b^2-a^2</math>.
Line 17: Line 17:
 
<math>1)</math> <math>b+a</math> <math>=</math> <math>11</math> and <math>b-a</math> <math>=</math> <math>9</math>.
 
<math>1)</math> <math>b+a</math> <math>=</math> <math>11</math> and <math>b-a</math> <math>=</math> <math>9</math>.
 
Adding the two equations we get <math>2b</math> <math>=</math> <math>20</math> or <math>b</math> <math>=</math> <math>10</math>, which means <math>a</math> <math>=</math> <math>1</math>.
 
Adding the two equations we get <math>2b</math> <math>=</math> <math>20</math> or <math>b</math> <math>=</math> <math>10</math>, which means <math>a</math> <math>=</math> <math>1</math>.
But looking at the restriction that the <math>second population</math> + <math>100</math> <math>=</math> <math>third population</math>...
+
But looking at the restriction that the second population + <math>100</math> <math>=</math> third population...
 
<math>10^2</math> <math>+</math> <math>1</math> <math>+</math> <math>100</math> <math>=</math> <math>201</math> <math>\neq</math> a perfect square.
 
<math>10^2</math> <math>+</math> <math>1</math> <math>+</math> <math>100</math> <math>=</math> <math>201</math> <math>\neq</math> a perfect square.
  

Revision as of 20:28, 19 February 2016

Problem

The population of Nosuch Junction at one time was a perfect square. Later, with an increase of $100$, the population was one more than a perfect square. Now, with an additional increase of $100$, the population is again a perfect square.


The original population is a multiple of:

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 11\qquad\textbf{(E)}\ 17$

Solution

Let $a^2$ $=$ original population count, $b^2+1$ $=$ the second population count, and $c^2$ $=$ the third population count We first see that $a^2 + 100 = b^2 + 1$ or $99$ $=$ $b^2-a^2$. We then factor the right side getting $99$ $=$ $(b-a)(b+a)$. Since we can only have an nonnegative integral population, clearly $b+a$ $>$ $b-a$ and both factor $99$. We factor $99$ into $3^2 \cdot 11$ $=$ $(b-a)(b+a)$ There are a few cases to look at: $1)$ $b+a$ $=$ $11$ and $b-a$ $=$ $9$. Adding the two equations we get $2b$ $=$ $20$ or $b$ $=$ $10$, which means $a$ $=$ $1$. But looking at the restriction that the second population + $100$ $=$ third population... $10^2$ $+$ $1$ $+$ $100$ $=$ $201$ $\neq$ a perfect square.

$2)$ $b+a$ $=$ $33$ and $b-a$ $=$ $3$. Adding the two equations we get $2b$ $=$ $36$ or $b$ $=$ $18$, which means $a$ $=$ $15$. Looking at the same restriction, we get $18^2$ + $1$ + $100$ $=$ $324$ + $101$ $=$ $425$, which is NOT a perfect square.

Finally, $b+a$ $=$ $99$ and $b-a$ $=$ $1$. $2b$ $=$ $100$ or $b$ $=$ $50$, which means $a$ $=$ $49$. Looking at the same restriction, we get $50^2$ + $1$ + $100$ $=$ $2500$ + $101$ $=$ $2601$ $=$ $51^2$. Thus we find that the original population is $a^2$ $=$ $49^2$ $=$ $7^4$. Or $a^2$ is a multiple of $\boxed{ (B) 7}$