Difference between revisions of "1983 AIME Problems/Problem 15"
m (→Solution 2) |
Smoothtorus (talk | contribs) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
The adjoining figure shows two intersecting [[chord]]s in a [[circle]], with <math>B</math> on minor arc <math>AD</math>. Suppose that the radius of the circle is <math>5</math>, that <math>BC=6</math>, and that <math>AD</math> is [[bisect]]ed by <math>BC</math>. Suppose further that <math>AD</math> is the only chord starting at <math>A</math> which is bisected by <math>BC</math>. It follows that the [[sine]] of the minor arc <math>AB</math> is a rational number. If this fraction is expressed as a fraction <math>\frac{m}{n}</math> in lowest terms, what is the product <math>mn</math>? | The adjoining figure shows two intersecting [[chord]]s in a [[circle]], with <math>B</math> on minor arc <math>AD</math>. Suppose that the radius of the circle is <math>5</math>, that <math>BC=6</math>, and that <math>AD</math> is [[bisect]]ed by <math>BC</math>. Suppose further that <math>AD</math> is the only chord starting at <math>A</math> which is bisected by <math>BC</math>. It follows that the [[sine]] of the minor arc <math>AB</math> is a rational number. If this fraction is expressed as a fraction <math>\frac{m}{n}</math> in lowest terms, what is the product <math>mn</math>? | ||
+ | //Credit to Adamz// | ||
<asy>size(100); | <asy>size(100); | ||
defaultpen(linewidth(.8pt)+fontsize(11pt)); | defaultpen(linewidth(.8pt)+fontsize(11pt)); | ||
Line 24: | Line 25: | ||
== Solution == | == Solution == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<asy> | <asy> | ||
size(10cm); | size(10cm); | ||
Line 53: | Line 45: | ||
pair D=(5,0); dot(D); label("$D$",D,E); | pair D=(5,0); dot(D); label("$D$",D,E); | ||
draw(A--D); | draw(A--D); | ||
− | </asy> | + | </asy>Let <math>A</math> be any fixed point on [[circle]] <math>O</math> and let <math>AD</math> be a [[chord]] of circle <math>O</math>. The [[locus]] of [[midpoint]]s <math>N</math> of the chord <math>AD</math> is a circle <math>P</math>, with diameter <math>AO</math>. Generally, the circle <math>P</math> can intersect the chord <math>BC</math> at two points, one point, or they may not have a point of intersection. By the problem condition, however, the circle <math>P</math> is tangent to BC at point N. |
+ | |||
+ | Let M be the midpoint of the chord <math>BC</math>. From [[right triangle]] <math>OMB</math>, <math>OM = \sqrt{OB^2 - BM^2} =4</math>. Thus, <math>\tan \angle BOM = \frac{BM}{OM} = \frac 3 4</math>. | ||
+ | |||
+ | Notice that the distance <math>OM</math> equals <math>PN + PO \cos AOM = r(1 + \cos AOM)</math> (Where <math>r</math> is the radius of circle P). Evaluating this, <math>\cos \angle AOM = \frac{OM}{r} - 1 = \frac{2OM}{R} - 1 = \frac 8 5 - 1 = \frac 3 5</math>. From <math>\cos \angle AOM</math>, we see that <math>\tan \angle AOM =\frac{\sqrt{1 - \cos^2 \angle AOM}}{\cos \angle AOM} = \frac{\sqrt{5^2 - 3^2}}{3} = \frac 4 3</math> | ||
+ | |||
+ | Next, notice that <math>\angle AOB = \angle AOM - \angle BOM</math>. We can therefore apply the tangent subtraction formula to obtain , <math>\tan AOB =\frac{\tan AOM - \tan BOM}{1 + \tan AOM \cdot \tan AOM} =\frac{\frac 4 3 - \frac 3 4}{1 + \frac 4 3 \cdot \frac 3 4} = \frac{7}{24}</math>. It follows that <math>\sin AOB =\frac{7}{\sqrt{7^2+24^2}} = \frac{7}{25}</math>, resulting in an answer of <math>7 \cdot 25=\boxed{175}</math>. | ||
+ | |||
+ | == Solution 1.5 [Motivation]== | ||
− | The above solution works, but is quite messy and somewhat difficult to follow. This solution provides | + | The above solution works, but is quite messy and somewhat difficult to follow. This solution provides the motivation behind the solution. |
First of all, where did the statement "<math>AD</math> is the only chord starting at <math>A</math> and bisected by <math>BC</math> " come from? What is its significance in this problem? What is the criterion for this statement to be true? | First of all, where did the statement "<math>AD</math> is the only chord starting at <math>A</math> and bisected by <math>BC</math> " come from? What is its significance in this problem? What is the criterion for this statement to be true? |
Revision as of 22:21, 25 May 2016
Problem
The adjoining figure shows two intersecting chords in a circle, with on minor arc . Suppose that the radius of the circle is , that , and that is bisected by . Suppose further that is the only chord starting at which is bisected by . It follows that the sine of the minor arc is a rational number. If this fraction is expressed as a fraction in lowest terms, what is the product ? //Credit to Adamz//
Solution
Let be any fixed point on circle and let be a chord of circle . The locus of midpoints of the chord is a circle , with diameter . Generally, the circle can intersect the chord at two points, one point, or they may not have a point of intersection. By the problem condition, however, the circle is tangent to BC at point N.
Let M be the midpoint of the chord . From right triangle , . Thus, .
Notice that the distance equals (Where is the radius of circle P). Evaluating this, . From , we see that
Next, notice that . We can therefore apply the tangent subtraction formula to obtain , . It follows that , resulting in an answer of .
Solution 1.5 [Motivation]
The above solution works, but is quite messy and somewhat difficult to follow. This solution provides the motivation behind the solution.
First of all, where did the statement " is the only chord starting at and bisected by " come from? What is its significance in this problem? What is the criterion for this statement to be true?
We consider the locus of midpoints of the chords from . It is well known that this is the circle with diameter , where is the center of the circle. The proof is simple: every midpoint of a chord is a dilation of the endpoint with ratio with center . Thus, the locus is the result of the dilation with ratio of circle with center . Let the center of this circle be .
Aha! Now we see. is bisected by if they cross at some point on the circle. Moreover, since is the only chord, must be tangent to the circle .
The rest of this problem is straight forward.
Our goal is to find where is the midpoint of . Then we have and . Let be the projection of onto , and similarly be the projection of onto . Then it remains to find so we can use the sine addition formula.
As is a radius of circle , , and similarly, . Since , . Thus, .
From here, we see that is a dilation of about center with ratio , so .
Lastly, we apply the formula:
Thus, our answer is .
See Also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |