Difference between revisions of "2016 AMC 12A Problems/Problem 21"

(Solution)
(Solution 2)
Line 26: Line 26:
  
 
==Solution 2==
 
==Solution 2==
Using trig. Since all three sides equal <math>200</math>, they subtend three equal angles from the center. The right triange between the center of the circle, a vertex, and the midpoint between two vertices has side lengths <math>100,100\sqrt{7},200\sqrt{2}</math> by the Pythagorean Theorem. Thus, the sine of half of the subtended angle is <math>\frac{100}{200\sqrt{2}}</math>=\frac{\sqrt{2}}{4}<math>. Similarly, the cosine is </math>\frac{100\sqrt{7}}{200\sqrt{2}}=\frac{\sqrt{14}}{4}<math>.
+
Using trig. Since all three sides equal <math>200</math>, they subtend three equal angles from the center. The right triange between the center of the circle, a vertex, and the midpoint between two vertices has side lengths <math>100,100\sqrt{7},200\sqrt{2}</math> by the Pythagorean Theorem. Thus, the sine of half of the subtended angle is <math>\frac{100}{200\sqrt{2}}=\frac{\sqrt{2}}{4}</math>. Similarly, the cosine is <math>\frac{100\sqrt{7}}{200\sqrt{2}}=\frac{\sqrt{14}}{4}</math>.
Since there are three sides, and since </math>\sin\theta=\sin\left(180-\theta\right)<math>,we seek to find </math>2r\sin 3\theta<math>.
+
Since there are three sides, and since <math>\sin\theta=\sin\left(180-\theta\right)</math>,we seek to find <math>2r\sin 3\theta</math>.
First, </math>\sin 2\theta=2\sin\theta\cos\theta=2\cdot\left(\frac{\sqrt{2}}{4}\right)\left(\frac{\sqrt{14}}{4}\right)=\frac{2\sqrt{2}\sqrt{14}}{16}=\frac{\sqrt{7}}{4}<math> and </math>\cos 2\theta=\frac{3}{4}$ by Pythagorean.
+
First, <math>\sin 2\theta=2\sin\theta\cos\theta=2\cdot\left(\frac{\sqrt{2}}{4}\right)\left(\frac{\sqrt{14}}{4}\right)=\frac{2\sqrt{2}\sqrt{14}}{16}=\frac{\sqrt{7}}{4}</math> and <math>\cos 2\theta=\frac{3}{4}</math> by Pythagorean.
 
<cmath>\sin 3\theta=\sin(2\theta+\theta)=\sin 2\theta\cos\theta+\sin \theta\cos 2\theta=\frac{\sqrt{7}}{4}\left(\frac{\sqrt{14}}{4}\right)+\frac\sqrt{2}}{4}\left(\frac{3}{4}\right)=\frac{7\sqrt{2}+3\sqrt{2}}{16}=\frac{5\sqrt{2}}{8}</cmath>.
 
<cmath>\sin 3\theta=\sin(2\theta+\theta)=\sin 2\theta\cos\theta+\sin \theta\cos 2\theta=\frac{\sqrt{7}}{4}\left(\frac{\sqrt{14}}{4}\right)+\frac\sqrt{2}}{4}\left(\frac{3}{4}\right)=\frac{7\sqrt{2}+3\sqrt{2}}{16}=\frac{5\sqrt{2}}{8}</cmath>.
 
<cmath>2r\sin 3\theta=2\left(200\sqrt{2}\right)\left(\frac5\sqrt{2}{}{8}\right)=400\sqrt{2}\left(\frac{5\sqrt{2}}{8}\right)=\frac{800\cdot 5}{8}=\boxed{\textbf{(C)}\text{ 500}}</cmath>
 
<cmath>2r\sin 3\theta=2\left(200\sqrt{2}\right)\left(\frac5\sqrt{2}{}{8}\right)=400\sqrt{2}\left(\frac{5\sqrt{2}}{8}\right)=\frac{800\cdot 5}{8}=\boxed{\textbf{(C)}\text{ 500}}</cmath>

Revision as of 16:02, 4 February 2016

Problem

A quadrilateral is inscribed in a circle of radius $200\sqrt{2}.$ Three of the sides of this quadrilateral have length $200.$ What is the length of its fourth side?

$\textbf{(A)}\ 200\qquad\textbf{(B)}\ 200\sqrt{2} \qquad\textbf{(C)}\ 200\sqrt{3} \qquad\textbf{(D)}\ 300\sqrt{2} \qquad\textbf{(E)}\ 500$

Solution 1

[asy] pathpen = black; pointpen = black; size(6cm); draw(unitcircle); pair A = D("A", dir(50), dir(50)); pair B = D("B", dir(90), dir(90)); pair C = D("C", dir(130), dir(130)); pair D = D("D", dir(170), dir(170)); pair O = D("O", (0,0), dir(-90)); draw(A--C, red); draw(B--D, blue+dashed); draw(A--B--C--D--cycle); draw(A--O--C); draw(O--B); [/asy]

Let $s = 200$. Let $O$ be the center of the circle. Then $AC$ is twice the altitude of $\triangle OBC$. Since $\triangle OBC$ is isosceles we can compute its area to be $s^2 \sqrt7/4$, hence $CA = 2 \tfrac{2 \cdot s^2\sqrt7/4}{s\sqrt2} = s\sqrt{7/2}$.

Now by Ptolemy's Theorem we have $CA^2 = s^2 + AD \cdot s \implies AD = (7/2-1)s = 500$.

Solution 2

Using trig. Since all three sides equal $200$, they subtend three equal angles from the center. The right triange between the center of the circle, a vertex, and the midpoint between two vertices has side lengths $100,100\sqrt{7},200\sqrt{2}$ by the Pythagorean Theorem. Thus, the sine of half of the subtended angle is $\frac{100}{200\sqrt{2}}=\frac{\sqrt{2}}{4}$. Similarly, the cosine is $\frac{100\sqrt{7}}{200\sqrt{2}}=\frac{\sqrt{14}}{4}$. Since there are three sides, and since $\sin\theta=\sin\left(180-\theta\right)$,we seek to find $2r\sin 3\theta$. First, $\sin 2\theta=2\sin\theta\cos\theta=2\cdot\left(\frac{\sqrt{2}}{4}\right)\left(\frac{\sqrt{14}}{4}\right)=\frac{2\sqrt{2}\sqrt{14}}{16}=\frac{\sqrt{7}}{4}$ and $\cos 2\theta=\frac{3}{4}$ by Pythagorean.

\[\sin 3\theta=\sin(2\theta+\theta)=\sin 2\theta\cos\theta+\sin \theta\cos 2\theta=\frac{\sqrt{7}}{4}\left(\frac{\sqrt{14}}{4}\right)+\frac\sqrt{2}}{4}\left(\frac{3}{4}\right)=\frac{7\sqrt{2}+3\sqrt{2}}{16}=\frac{5\sqrt{2}}{8}\] (Error compiling LaTeX. Unknown error_msg)

.

\[2r\sin 3\theta=2\left(200\sqrt{2}\right)\left(\frac5\sqrt{2}{}{8}\right)=400\sqrt{2}\left(\frac{5\sqrt{2}}{8}\right)=\frac{800\cdot 5}{8}=\boxed{\textbf{(C)}\text{ 500}}\] (Error compiling LaTeX. Unknown error_msg)