Difference between revisions of "2016 AMC 12A Problems/Problem 21"
0x5f3759df (talk | contribs) (→Solution) |
(→Solution) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A)}\ 200\qquad\textbf{(B)}\ 200\sqrt{2} \qquad\textbf{(C)}\ 200\sqrt{3} \qquad\textbf{(D)}\ 300\sqrt{2} \qquad\textbf{(E)}\ 500</math> | <math>\textbf{(A)}\ 200\qquad\textbf{(B)}\ 200\sqrt{2} \qquad\textbf{(C)}\ 200\sqrt{3} \qquad\textbf{(D)}\ 300\sqrt{2} \qquad\textbf{(E)}\ 500</math> | ||
− | ==Solution== | + | ==Solution 1== |
<asy> | <asy> | ||
Line 24: | Line 24: | ||
Now by Ptolemy's Theorem we have <math>CA^2 = s^2 + AD \cdot s \implies AD = (7/2-1)s = 500</math>. | Now by Ptolemy's Theorem we have <math>CA^2 = s^2 + AD \cdot s \implies AD = (7/2-1)s = 500</math>. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Using trig. Since all three sides equal <math>200</math>, they subtend three equal angles from the center. The right triange between the center of the circle, a vertex, and the midpoint between two vertices has side lengths <math>100,100\sqrt{7},200\sqrt{2}</math> by the Pythagorean Theorem. Thus, the sine of half of the subtended angle is <math>\frac{100}{200\sqrt{2}}</math>=\frac{\sqrt{2}}{4}<math>. Similarly, the cosine is </math>\frac{100\sqrt{7}}{200\sqrt{2}}=\frac{\sqrt{14}}{4}<math>. | ||
+ | Since there are three sides, and since </math>\sin\theta=\sin\left(180-\theta\right)<math>,we seek to find </math>2r\sin 3\theta<math>. | ||
+ | First, </math>\sin 2\theta=2\sin\theta\cos\theta=2\cdot\left(\frac{\sqrt{2}}{4}\right)\left(\frac{\sqrt{14}}{4}\right)=\frac{2\sqrt{2}\sqrt{14}}{16}=\frac{\sqrt{7}}{4}<math> and </math>\cos 2\theta=\frac{3}{4}$ by Pythagorean. | ||
+ | <cmath>\sin 3\theta=\sin(2\theta+\theta)=\sin 2\theta\cos\theta+\sin \theta\cos 2\theta=\frac{\sqrt{7}}{4}\left(\frac{\sqrt{14}}{4}\right)+\frac\sqrt{2}}{4}\left(\frac{3}{4}\right)=\frac{7\sqrt{2}+3\sqrt{2}}{16}=\frac{5\sqrt{2}}{8}</cmath>. | ||
+ | <cmath>2r\sin 3\theta=2\left(200\sqrt{2}\right)\left(\frac5\sqrt{2}{}{8}\right)=400\sqrt{2}\left(\frac{5\sqrt{2}}{8}\right)=\frac{800\cdot 5}{8}=\boxed{\textbf{(C)}\text{ 500}}</cmath> |
Revision as of 16:02, 4 February 2016
Problem
A quadrilateral is inscribed in a circle of radius Three of the sides of this quadrilateral have length What is the length of its fourth side?
Solution 1
Let . Let be the center of the circle. Then is twice the altitude of . Since is isosceles we can compute its area to be , hence .
Now by Ptolemy's Theorem we have .
Solution 2
Using trig. Since all three sides equal , they subtend three equal angles from the center. The right triange between the center of the circle, a vertex, and the midpoint between two vertices has side lengths by the Pythagorean Theorem. Thus, the sine of half of the subtended angle is =\frac{\sqrt{2}}{4}\frac{100\sqrt{7}}{200\sqrt{2}}=\frac{\sqrt{14}}{4}\sin\theta=\sin\left(180-\theta\right)2r\sin 3\theta\sin 2\theta=2\sin\theta\cos\theta=2\cdot\left(\frac{\sqrt{2}}{4}\right)\left(\frac{\sqrt{14}}{4}\right)=\frac{2\sqrt{2}\sqrt{14}}{16}=\frac{\sqrt{7}}{4}\cos 2\theta=\frac{3}{4}$ by Pythagorean.
\[\sin 3\theta=\sin(2\theta+\theta)=\sin 2\theta\cos\theta+\sin \theta\cos 2\theta=\frac{\sqrt{7}}{4}\left(\frac{\sqrt{14}}{4}\right)+\frac\sqrt{2}}{4}\left(\frac{3}{4}\right)=\frac{7\sqrt{2}+3\sqrt{2}}{16}=\frac{5\sqrt{2}}{8}\] (Error compiling LaTeX. Unknown error_msg)
.
\[2r\sin 3\theta=2\left(200\sqrt{2}\right)\left(\frac5\sqrt{2}{}{8}\right)=400\sqrt{2}\left(\frac{5\sqrt{2}}{8}\right)=\frac{800\cdot 5}{8}=\boxed{\textbf{(C)}\text{ 500}}\] (Error compiling LaTeX. Unknown error_msg)