Difference between revisions of "2016 AMC 10A Problems/Problem 21"
(Added diagram) |
|||
Line 62: | Line 62: | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=A|num-b=20|num-a=22}} | {{AMC10 box|year=2016|ab=A|num-b=20|num-a=22}} | ||
+ | {{AMC10 box|year=2016|ab=A|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:18, 4 February 2016
Circles with centers and , having radii and , respectively, lie on the same side of line and are tangent to at and , respectively, with between and . The circle with center is externally tangent to each of the other two circles. What is the area of triangle ?
Solution
Notice that we can find in two different ways: and , so
Thus, these are equal. . Additionally, . Therefore, . Similarly, . We can calculate easily because . .
Plugging into first equation, the two sums of areas, .
.
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.