Difference between revisions of "2016 AMC 10A Problems/Problem 21"
(→Solution 1) |
Awesomeclaw (talk | contribs) |
||
Line 2: | Line 2: | ||
<math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}</math> | <math>\textbf{(A) } 0\qquad \textbf{(B) } \sqrt{\frac{2}{3}}\qquad\textbf{(C) } 1\qquad\textbf{(D) } \sqrt{6}-\sqrt{2}\qquad\textbf{(E) }\sqrt{\frac{3}{2}}</math> | ||
+ | |||
+ | ==Solution==[edit] | ||
+ | |||
+ | Notice that we can find <math>[P'PQRR']</math> in two different ways: <math>[P'PQQ']+[Q'QRR']</math> and <math>[PQR]+[P'PRR']</math>, so <math>[P'PQQ']+[Q'QRR']=[PQR]+[P'PRR']</math> | ||
+ | <math>\break</math> | ||
+ | |||
+ | Thus, these are equal. <math>P'Q'=\sqrt{PQ^2-(QQ'-PP')^2}=\sqrt{9-1}=\sqrt{8}=2\sqrt{2}</math>. Additionally, <math>Q'R'=\sqrt{QR^2-(RR'-QQ')^2}=\sqrt{5^2-1^2}=\sqrt{24}=2\sqrt{6}</math>. Therefore, <math>[P'PQQ']=\frac{P'P+Q'Q}{2}*2\sqrt{2}=\frac{1+2}{2}*2\sqrt{2}=3\sqrt{2}</math>. Similarly, <math>[Q'QRR']=5\sqrt6</math>. We can calculate <math>[P'PRR']</math> easily because <math>P'R'=P'Q'+Q'R'=2\sqrt{2}+2\sqrt{6}</math>. <math>[P'PRR']=4\sqrt{2}+4\sqrt{6}</math>. <math>\newline</math> | ||
+ | |||
+ | Plugging into first equation, the two sums of areas, <math>3\sqrt{2}+5\sqrt{6}=4\sqrt{2}+4\sqrt{6}+[PQR]</math>. <math>\newline</math> | ||
+ | |||
+ | <math>[PQR]=\sqrt{6}-\sqrt{2}\rightarrow \fbox{D}</math>. |
Revision as of 22:11, 3 February 2016
Circles with centers and , having radii and , respectively, lie on the same side of line and are tangent to at and , respectively, with between and . The circle with center is externally tangent to each of the other two circles. What is the area of triangle ?
==Solution==[edit]
Notice that we can find in two different ways: and , so
Thus, these are equal. . Additionally, . Therefore, . Similarly, . We can calculate easily because . .
Plugging into first equation, the two sums of areas, .
.