Difference between revisions of "2015 AMC 8 Problems/Problem 19"
(Added solution 5 using pick's theorem) |
(→Solution 2) |
||
Line 28: | Line 28: | ||
==Solution 2== | ==Solution 2== | ||
− | Note angle <math>\angle ACB</math> is right, thus the area is <math>\sqrt{1^2+3^2} \times \sqrt{1^2+3^2}\times \dfrac{1}{2}= | + | Note angle <math>\angle ACB</math> is right, thus the area is <math>\sqrt{1^2+3^2} \times \sqrt{1^2+3^2}\times \dfrac{1}{2}=10 \times \dfrac{1}{2}=5</math> thus the fraction of the total is <math>\dfrac{5}{30}=\boxed{\textbf{(A)}~\dfrac{1}{6}}</math> |
==Solution 3== | ==Solution 3== |
Revision as of 11:11, 1 February 2016
A triangle with vertices as , , and is plotted on a grid. What fraction of the grid is covered by the triangle?
Solution 1
The area of is equal to half the product of its base and height. By the Pythagorean Theorem, we find its height is , and its base is . We multiply these and divide by to find the of the triangle is . Since the grid has an area of , the fraction of the grid covered by the triangle is .
Solution 2
Note angle is right, thus the area is thus the fraction of the total is
Solution 3
By the Shoelace theorem, the area of .
This means the fraction of the total area is
Solution 4
The smallest rectangle that follows the grid lines and completely encloses has an area of , where splits the rectangle into four triangles. The area of is therefore . That means that takes up of the grid.
Solution 5
Using Pick's Theorem, the area of the triangle is . Therefore, the triangle takes up of the grid.
Solution by bobert1
See Also
2015 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.