Difference between revisions of "2014 AMC 10B Problems/Problem 14"

(Solution)
Line 11: Line 11:
 
==Solution 2==
 
==Solution 2==
 
Danica drives <math>m</math> miles, such that <math>m>0</math> and <math>m</math> is a multiple of 55. Therefore, <math>m</math> must have an units digit of either <math>0</math> or <math>5.</math> If the units digit of <math>m</math> is <math>0,</math> then <math>a=c</math> which would imply that Danica did not drive at all. Thus, <math>c>a.</math> Therefore, <math>|a-c|=5,</math> and because <math>a+b+c\leq7, c>a,</math> we have <math>(a,c)=(1,6).</math> Finally, <math>b</math> then must be <math>0</math> due to <math>a+b+c\leq 7,</math> and <math>a^2+b^2+c^2=1^2+0^2+6^2=\fbox{\textbf{(D) }37}</math>
 
Danica drives <math>m</math> miles, such that <math>m>0</math> and <math>m</math> is a multiple of 55. Therefore, <math>m</math> must have an units digit of either <math>0</math> or <math>5.</math> If the units digit of <math>m</math> is <math>0,</math> then <math>a=c</math> which would imply that Danica did not drive at all. Thus, <math>c>a.</math> Therefore, <math>|a-c|=5,</math> and because <math>a+b+c\leq7, c>a,</math> we have <math>(a,c)=(1,6).</math> Finally, <math>b</math> then must be <math>0</math> due to <math>a+b+c\leq 7,</math> and <math>a^2+b^2+c^2=1^2+0^2+6^2=\fbox{\textbf{(D) }37}</math>
 +
 +
==Solution 3==
 +
 +
We can set up an algebraic equation for this problem.
 +
 +
From what's given, we have that <math>100c+10b+a=55x+100a+10b+c</math>
 +
 +
This simplifies to be <math>0=55x+99a-99c\implies -55x=99a-99c</math>
 +
 +
Factoring, we get that <math>-55x=99(a-c)\implies </math>x=-\frac{9(a-c)}{5}<math>
 +
 +
Hence, notice that we want </math>a-c=-5<math>
 +
 +
The only pair that works for this problem that satisfies the original requirements is </math>(1,6)<math>
 +
 +
Hence, </math>a=1, b=0, c=6<math>
 +
 +
Checking, we have that </math>106+495=601<math>
 +
 +
Hence, the answer is </math>1^2+0^2+6^2=37\implies\boxed{D}$
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2014|ab=B|num-b=13|num-a=15}}
 
{{AMC10 box|year=2014|ab=B|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:40, 14 June 2017

Problem

Danica drove her new car on a trip for a whole number of hours, averaging $55$ miles per hour. At the beginning of the trip, $abc$ miles was displayed on the odometer, where $abc$ is a $3$-digit number with $a\ge1$ and $a+b+c\le7$. At the end of the trip, the odometer showed $cba$ miles. What is $a^2+b^2+c^2$?

$\textbf {(A) } 26 \qquad \textbf {(B) } 27 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 37 \qquad \textbf {(E) } 41$

Solution

Let $h\in\mathbb{N}$ be the number of hours Danica drove. Note that $abc$ can be expressed as $100\cdot a+10\cdot b+c$. From the given information, we have $100a+10b+c+55h=100c+10b+a$. This can be simplified into $99a+55h=99c$ by subtraction, which can further be simplified into $9a+5h=9c$ by dividing both sides by $11$. Thus we must have $h\equiv0\pmod9$. However, if $h\ge 15$, then $\text{min}\{c\}\ge\frac{9+5(15)}{9}>9$, which is impossible since $c$ must be a digit. The only value of $h$ that is divisible by $9$ and less than or equal to $14$ is $h=9$.

From this information, $9a+5(9)=9c\Rightarrow a+5=c$. Combining this with the inequalities $a+b+c\le7$ and $a\ge1$, we have $a+b+a+5\le7\Rightarrow 2a+b\le2$, which implies $1\le a\le1$, so $a=1$, $b=0$, and $c=6$. Thus $a^2+b^2+c^2=1+0+36=\fbox{37 \textbf{(D)}}$

Solution 2

Danica drives $m$ miles, such that $m>0$ and $m$ is a multiple of 55. Therefore, $m$ must have an units digit of either $0$ or $5.$ If the units digit of $m$ is $0,$ then $a=c$ which would imply that Danica did not drive at all. Thus, $c>a.$ Therefore, $|a-c|=5,$ and because $a+b+c\leq7, c>a,$ we have $(a,c)=(1,6).$ Finally, $b$ then must be $0$ due to $a+b+c\leq 7,$ and $a^2+b^2+c^2=1^2+0^2+6^2=\fbox{\textbf{(D) }37}$

Solution 3

We can set up an algebraic equation for this problem.

From what's given, we have that $100c+10b+a=55x+100a+10b+c$

This simplifies to be $0=55x+99a-99c\implies -55x=99a-99c$

Factoring, we get that $-55x=99(a-c)\implies$x=-\frac{9(a-c)}{5}$Hence, notice that we want$a-c=-5$The only pair that works for this problem that satisfies the original requirements is$(1,6)$Hence,$a=1, b=0, c=6$Checking, we have that$106+495=601$Hence, the answer is$1^2+0^2+6^2=37\implies\boxed{D}$

See Also

2014 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png