Difference between revisions of "2002 AMC 12B Problems/Problem 10"
Calculus123 (talk | contribs) (→Solution) |
|||
Line 7: | Line 7: | ||
\qquad\mathrm{(E)}\ 35</math> | \qquad\mathrm{(E)}\ 35</math> | ||
− | ==Solution== | + | ==Solution 1== |
Subtracting 10 from each number in the set, and dividing the results by 3, we obtain the set <math>\{-3, -2, -1, 0, 1, 2, 3\}</math>. It is easy to see that we can get any integer between <math>-6</math> and <math>6</math> inclusive as the sum of three elements from this set, for the total of <math>\boxed{\mathrm{(A) } 13}</math> integers. | Subtracting 10 from each number in the set, and dividing the results by 3, we obtain the set <math>\{-3, -2, -1, 0, 1, 2, 3\}</math>. It is easy to see that we can get any integer between <math>-6</math> and <math>6</math> inclusive as the sum of three elements from this set, for the total of <math>\boxed{\mathrm{(A) } 13}</math> integers. | ||
+ | |||
+ | ==Solution 2== | ||
+ | The set is an arithmetic sequence of numbers each <math>1</math> more than a multiple of <math>3</math>. Thus the sum of any three numbers will be a multiple of <math>3</math>. All the multiples of <math>3</math> from <math>1+4+7=12</math> to <math>13+16+19=48</math> are possible, totaling to <math>\boxed{\mathrm{(A) } 13}</math> integers. | ||
==See also== | ==See also== |
Revision as of 22:56, 12 May 2018
Contents
Problem
How many different integers can be expressed as the sum of three distinct members of the set ?
Solution 1
Subtracting 10 from each number in the set, and dividing the results by 3, we obtain the set . It is easy to see that we can get any integer between and inclusive as the sum of three elements from this set, for the total of integers.
Solution 2
The set is an arithmetic sequence of numbers each more than a multiple of . Thus the sum of any three numbers will be a multiple of . All the multiples of from to are possible, totaling to integers.
See also
2002 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 9 |
Followed by Problem 11 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.