Difference between revisions of "Hlder's Inequality"
m (Hölder's inequality moved to Hölder's Inequality: capitalization change) |
ComplexZeta (talk | contribs) |
||
Line 1: | Line 1: | ||
− | + | ==Statement== | |
− | Proof | + | If <math>p,q>1</math>, <math>1/p+1/q=1</math>, <math>f\in L^p, g\in L^q</math> then <math>fg\in L^1</math> and <math>||fg||_1\leq ||f||_p||g||_q</math>. |
+ | |||
+ | ==Proof== | ||
+ | |||
+ | If <math>||f||_p=0</math> then <math>f=0</math> a.e. and there is nothing to prove. Case <math>||g||_q=0</math> is similar. On the other hand, we may assume that <math>f(x),g(x)\in\mathbb{R}</math> for all <math>x</math>. Let <math>a=\frac{|f(x)|^p}{||f||_p^p}, b=\frac{|g(x)|^q}{||g||_q^q},\alpha=1/p,\beta=1/q</math>. [[Young's Inequality]] gives us | ||
<center><math>\frac{|f(x)|}{||f||_p}\frac{|g(x)|}{||g||_q}\leq \frac{1}{p}\frac{|f(x)|^p}{||f||_p^p}+\frac{1}{q}\frac{|g(x)|^q}{||g||_q^q}.</math></center> These functions are measurable, so by integrating we get | <center><math>\frac{|f(x)|}{||f||_p}\frac{|g(x)|}{||g||_q}\leq \frac{1}{p}\frac{|f(x)|^p}{||f||_p^p}+\frac{1}{q}\frac{|g(x)|^q}{||g||_q^q}.</math></center> These functions are measurable, so by integrating we get | ||
− | <center><math>\frac{||fg||_1}{||f||_p||g||_q}\leq\frac{1}{p}\frac{||f(x)||^p}{||f||_p^p}+\frac{1}{q}\frac{||g(x)||^q}{||g||_q^q}=\frac{1}{p}+\frac{1}{q}=1</math></center> | + | <center><math>\frac{||fg||_1}{||f||_p||g||_q}\leq\frac{1}{p}\frac{||f(x)||^p}{||f||_p^p}+\frac{1}{q}\frac{||g(x)||^q}{||g||_q^q}=\frac{1}{p}+\frac{1}{q}=1</math>.</center> |
Revision as of 17:03, 11 July 2006
Statement
If , , then and .
Proof
If then a.e. and there is nothing to prove. Case is similar. On the other hand, we may assume that for all . Let . Young's Inequality gives us
These functions are measurable, so by integrating we get