Difference between revisions of "2011 AIME I Problems/Problem 4"

(Solution)
(Solution)
Line 6: Line 6:
 
Extend <math>{CM}</math> and <math>{CN}</math> such that they intersects lines <math>{AB}</math> at points <math>P</math> and <math>Q</math>, respectively.  
 
Extend <math>{CM}</math> and <math>{CN}</math> such that they intersects lines <math>{AB}</math> at points <math>P</math> and <math>Q</math>, respectively.  
 
Since <math>{BM}</math> is the angle bisector of angle B,and <math>{CM}</math> is perpendicular to <math>{BM}</math> ,so , <math>BP=BC=120</math>, M is the midpoint of <math>{CP}</math> .For the same reason,<math>AQ=AC=117</math>,N is the midpoint of <math>{CQ}</math>.
 
Since <math>{BM}</math> is the angle bisector of angle B,and <math>{CM}</math> is perpendicular to <math>{BM}</math> ,so , <math>BP=BC=120</math>, M is the midpoint of <math>{CP}</math> .For the same reason,<math>AQ=AC=117</math>,N is the midpoint of <math>{CQ}</math>.
Hence<math>MN=\frac{PQ}{2}</math>.But <math>PQ=BP+AQ-AB=120+117-125=112,so</math>MN=\boxed{56}$.
+
Hence<math>MN=\frac{PQ}{2}</math>.But <math>PQ=BP+AQ-AB=120+117-125=112</math>,so<math>MN=\boxed{56}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2011|n=I|num-b=3|num-a=5}}
 
{{AIME box|year=2011|n=I|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:28, 7 November 2015

Problem 4

In triangle $ABC$, $AB=125$, $AC=117$ and $BC=120$. The angle bisector of angle $A$ intersects $\overline{BC}$ at point $L$, and the angle bisector of angle $B$ intersects $\overline{AC}$ at point $K$. Let $M$ and $N$ be the feet of the perpendiculars from $C$ to $\overline{BK}$ and $\overline{AL}$, respectively. Find $MN$.


Solution

Extend ${CM}$ and ${CN}$ such that they intersects lines ${AB}$ at points $P$ and $Q$, respectively. Since ${BM}$ is the angle bisector of angle B,and ${CM}$ is perpendicular to ${BM}$ ,so , $BP=BC=120$, M is the midpoint of ${CP}$ .For the same reason,$AQ=AC=117$,N is the midpoint of ${CQ}$. Hence$MN=\frac{PQ}{2}$.But $PQ=BP+AQ-AB=120+117-125=112$,so$MN=\boxed{56}$.

See also

2011 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png