Difference between revisions of "2006 AMC 12A Problems/Problem 21"
(Added solution) |
|||
Line 14: | Line 14: | ||
== Solution == | == Solution == | ||
+ | Looking at the constraints of <math>S_1</math>: | ||
+ | <math>\log_{10}(1+x^2+y^2)\le 1+\log_{10}(x+y)</math> | ||
+ | |||
+ | <math> \log_{10}(1+x^2+y^2)\le \log_{10} 10 +\log_{10}(x+y)</math> | ||
+ | |||
+ | <math> \log_{10}(1+x^2+y^2)\le \log_{10}(10x+10y)</math> | ||
+ | |||
+ | <math> 1+x^2+y^2 \le 10x+10y </math> | ||
+ | |||
+ | <math> x^2-10x+y^2-10y \le -1 </math> | ||
+ | |||
+ | <math> x^2-10x+25+y^2-10y+25 \le 49 </math> | ||
+ | |||
+ | <math> (x-5)^2 + (y-5)^2 \le (7)^2 </math> | ||
+ | |||
+ | <math>S_1</math> is a circle with a radius of <math>7</math>. So, the area of <math>S_1</math> is <math>49\pi</math>. | ||
+ | |||
+ | Looking at the constraints of <math>S_2</math>: | ||
+ | |||
+ | <math>\log_{10}(2+x^2+y^2)\le 1+\log_{10}(x+y)</math> | ||
+ | |||
+ | <math> \log_{10}(2+x^2+y^2)\le \log_{10} 100 +\log_{10}(x+y)</math> | ||
+ | |||
+ | <math> \log_{10}(2+x^2+y^2)\le \log_{10}(100x+100y)</math> | ||
+ | |||
+ | <math> 2+x^2+y^2 \le 100x+100y </math> | ||
+ | |||
+ | <math> x^2-100x+y^2-100y \le -2 </math> | ||
+ | |||
+ | <math> x^2-100x+2500+y^2-100y+2500 \le 4998 </math> | ||
+ | |||
+ | <math> (x-50)^2 + (y-50)^2 \le (7\sqrt{102})^2 </math> | ||
+ | |||
+ | <math>S_2</math> is a circle with a radius of <math>7\sqrt{102}</math>. So, the area of <math>S_2</math> is <math>4998\pi</math>. | ||
+ | |||
+ | So the desired ratio is <math> \frac{4998\pi}{49\pi} = 102 \Rightarrow E </math> | ||
== See also == | == See also == | ||
* [[2006 AMC 12A Problems]] | * [[2006 AMC 12A Problems]] |
Revision as of 13:30, 15 July 2006
Problem
Let
and
.
What is the ratio of the area of to the area of ?
Solution
Looking at the constraints of :
is a circle with a radius of . So, the area of is .
Looking at the constraints of :
is a circle with a radius of . So, the area of is .
So the desired ratio is