Difference between revisions of "2014 AMC 8 Problems/Problem 25"

(Solution)
(Problem)
Line 2: Line 2:
 
A straight one-mile stretch of highway, <math>40</math> feet wide, is closed. Robert rides his bike on a path composed of semicircles as shown. If he rides at <math>5</math> miles per hour, how many hours will it take to cover the one-mile stretch?
 
A straight one-mile stretch of highway, <math>40</math> feet wide, is closed. Robert rides his bike on a path composed of semicircles as shown. If he rides at <math>5</math> miles per hour, how many hours will it take to cover the one-mile stretch?
  
Note: <math>1</math> mile= <math>5280</math> feet
+
Note: <math>1</math> mile = <math>5280</math> feet
 
 
<asy>
 
D(arc((-2,0),1,300,360));
 
D(arc((0,0),1,0,180));
 
D(arc((2,0),1,180,360));
 
D(arc((4,0),1,0,180));
 
D(arc((6,0),1,180,240));
 
D((-1.5,1)--(5.5,));
 
D((-1.5,0)--(5.5,0),dashed);
 
D((-1.5,-1)--(5.5,-1));
 
</asy>
 
  
 +
<asy> size(10cm); pathpen=black; pointpen=black; D(arc((-2,0),1,300,360)); D(arc((0,0),1,0,180)); D(arc((2,0),1,180,360)); D(arc((4,0),1,0,180)); D(arc((6,0),1,180,240)); D((-1.5,1)--(5.5,1)); D((-1.5,0)--(5.5,0),dashed); D((-1.5,-1)--(5.5,-1)); </asy>
 
<math> \textbf{(A) }\frac{\pi}{11}\qquad\textbf{(B) }\frac{\pi}{10}\qquad\textbf{(C) }\frac{\pi}{5}\qquad\textbf{(D) }\frac{2\pi}{5}\qquad\textbf{(E) }\frac{2\pi}{3} </math>
 
<math> \textbf{(A) }\frac{\pi}{11}\qquad\textbf{(B) }\frac{\pi}{10}\qquad\textbf{(C) }\frac{\pi}{5}\qquad\textbf{(D) }\frac{2\pi}{5}\qquad\textbf{(E) }\frac{2\pi}{3} </math>
  
 
==Solution==
 
==Solution==
 
There are two possible interpretations of the problem: that the road as a whole is <math>40</math> feet wide, or that each lane is <math>40</math> feet wide. Both interpretations will arrive at the same result. However, let us stick with the first interpretation for simplicity. Each lane must then be <math>20</math> feet wide, so Robert must be riding his bike in semicircles with radius <math>20</math> feet and diameter <math>40</math> feet. Since the road is <math>5280</math> feet long, over the whole mile, Robert rides <math>\frac{5280}{40} =132</math> semicircles in total. Were the semicircles full circles, their circumference would be <math>2\pi\cdot 20=40\pi</math> feet; as it is, the circumference of each is half that, or <math>20\pi</math> feet. Therefore, over the stretch of highway, Robert rides a total of <math>132\cdot 20\pi =2640\pi</math> feet, equivalent to <math>\frac{\pi}{2}</math> miles. Robert rides at 5 miles per hour, so divide the <math>\frac{\pi}{2}</math> miles by <math>5</math> mph to arrive at <math>\textbf{(B) }\frac{\pi}{10}</math> hours.
 
There are two possible interpretations of the problem: that the road as a whole is <math>40</math> feet wide, or that each lane is <math>40</math> feet wide. Both interpretations will arrive at the same result. However, let us stick with the first interpretation for simplicity. Each lane must then be <math>20</math> feet wide, so Robert must be riding his bike in semicircles with radius <math>20</math> feet and diameter <math>40</math> feet. Since the road is <math>5280</math> feet long, over the whole mile, Robert rides <math>\frac{5280}{40} =132</math> semicircles in total. Were the semicircles full circles, their circumference would be <math>2\pi\cdot 20=40\pi</math> feet; as it is, the circumference of each is half that, or <math>20\pi</math> feet. Therefore, over the stretch of highway, Robert rides a total of <math>132\cdot 20\pi =2640\pi</math> feet, equivalent to <math>\frac{\pi}{2}</math> miles. Robert rides at 5 miles per hour, so divide the <math>\frac{\pi}{2}</math> miles by <math>5</math> mph to arrive at <math>\textbf{(B) }\frac{\pi}{10}</math> hours.

Revision as of 11:36, 23 October 2015

Problem

A straight one-mile stretch of highway, $40$ feet wide, is closed. Robert rides his bike on a path composed of semicircles as shown. If he rides at $5$ miles per hour, how many hours will it take to cover the one-mile stretch?

Note: $1$ mile = $5280$ feet

[asy] size(10cm); pathpen=black; pointpen=black; D(arc((-2,0),1,300,360)); D(arc((0,0),1,0,180)); D(arc((2,0),1,180,360)); D(arc((4,0),1,0,180)); D(arc((6,0),1,180,240)); D((-1.5,1)--(5.5,1)); D((-1.5,0)--(5.5,0),dashed); D((-1.5,-1)--(5.5,-1)); [/asy] $\textbf{(A) }\frac{\pi}{11}\qquad\textbf{(B) }\frac{\pi}{10}\qquad\textbf{(C) }\frac{\pi}{5}\qquad\textbf{(D) }\frac{2\pi}{5}\qquad\textbf{(E) }\frac{2\pi}{3}$

Solution

There are two possible interpretations of the problem: that the road as a whole is $40$ feet wide, or that each lane is $40$ feet wide. Both interpretations will arrive at the same result. However, let us stick with the first interpretation for simplicity. Each lane must then be $20$ feet wide, so Robert must be riding his bike in semicircles with radius $20$ feet and diameter $40$ feet. Since the road is $5280$ feet long, over the whole mile, Robert rides $\frac{5280}{40} =132$ semicircles in total. Were the semicircles full circles, their circumference would be $2\pi\cdot 20=40\pi$ feet; as it is, the circumference of each is half that, or $20\pi$ feet. Therefore, over the stretch of highway, Robert rides a total of $132\cdot 20\pi =2640\pi$ feet, equivalent to $\frac{\pi}{2}$ miles. Robert rides at 5 miles per hour, so divide the $\frac{\pi}{2}$ miles by $5$ mph to arrive at $\textbf{(B) }\frac{\pi}{10}$ hours.