Difference between revisions of "2014 AMC 10A Problems/Problem 25"

(ProbIem)
m (Solution)
Line 8: Line 8:
 
\textbf{(D) }281\qquad
 
\textbf{(D) }281\qquad
 
\textbf{(E) }282\qquad</math>
 
\textbf{(E) }282\qquad</math>
 
==Solution==
 
 
Between any two consecutive powers of <math>5</math> there are either <math>2</math> or <math>3</math> powers of <math>2</math> (because <math>2^2<5^1<2^3</math>). Consider the intervals <math>(5^0,5^1),(5^1,5^2),\dots (5^{866},5^{867})</math>. We want the number of intervals with <math>3</math> powers of <math>2</math>.
 
 
From the given that <math>2^{2013}<5^{867}<2^{2014}</math>, we know that these <math>867</math> intervals together have <math>2013</math> powers of <math>2</math>. Let <math>x</math> of them have <math>2</math> powers of <math>2</math> and <math>y</math> of them have <math>3</math> powers of <math>2</math>. Thus we have the system
 
<cmath>x+y=867</cmath><cmath>2x+3y=2013</cmath>
 
from which we get <math>y=279</math>, so the answer is <math>\boxed{\textbf{(B)}}</math>.
 
  
 
==See Also==
 
==See Also==

Revision as of 21:37, 15 October 2015

The following problem is from both the 2014 AMC 12A #22 and 2014 AMC 10A #25, so both problems redirect to this page.

ProbIem

The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and \[5^n<2^m<2^{m+2}<5^{n+1}?\] $\textbf{(A) }278\qquad \textbf{(B) }279\qquad \textbf{(C) }280\qquad \textbf{(D) }281\qquad \textbf{(E) }282\qquad$

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png