Difference between revisions of "2015 AIME I Problems/Problem 14"

m (Solution)
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
For each integer <math>n \ge 2</math>, let <math>A(n)</math> be the area of the region in the coordinate plane deefined by the inequalities <math>1\le x \le n</math> and <math>0\le y \le x \left\lfloor \sqrt x \right\rfloor</math>, where <math>\left\lfloor \sqrt x \right\rfloor</math> is the greatest integer not exceeding <math>\sqrt x</math>. Find the number of values of <math>n</math> with <math>2\le n \le 1000</math> for which <math>A(n)</math> is an integer.
+
For each integer <math>n \ge 2</math>, let <math>A(n)</math> be the area of the region in the coordinate plane defined by the inequalities <math>1\le x \le n</math> and <math>0\le y \le x \left\lfloor \sqrt x \right\rfloor</math>, where <math>\left\lfloor \sqrt x \right\rfloor</math> is the greatest integer not exceeding <math>\sqrt x</math>. Find the number of values of <math>n</math> with <math>2\le n \le 1000</math> for which <math>A(n)</math> is an integer.
  
 
==Solution==
 
==Solution==

Revision as of 19:01, 28 November 2015

Problem

For each integer $n \ge 2$, let $A(n)$ be the area of the region in the coordinate plane defined by the inequalities $1\le x \le n$ and $0\le y \le x \left\lfloor \sqrt x \right\rfloor$, where $\left\lfloor \sqrt x \right\rfloor$ is the greatest integer not exceeding $\sqrt x$. Find the number of values of $n$ with $2\le n \le 1000$ for which $A(n)$ is an integer.

Solution

By considering the graph of this function, it is shown that the graph is composed of trapezoids ranging from $a^2$ to $(a+1)^2$ with the top made of diagonal line $y=ax$. The width of each trapezoid is $3, 5, 7$, etc. Whenever $a$ is odd, the value of $A(n)$ increases by an integer value, plus $\frac{1}{2}$. Whenever $a$ is even, the value of $A(n)$ increases by an integer value. Since each trapezoid always has an odd width, every value of $n$ is not an integer when $a \pmod{4} \equiv 2$, and is an integer when $a \pmod{4} \equiv 0$. Every other value is an integer when $a$ is odd. Therefore, it is simply a matter to determine the number of values of $n$ where $a \pmod{4} \equiv 0$ ($(5^2-4^2)+(9^2-8^2)+...+(29^2-28^2)$), and add the number of values of $n$ where $a$ is odd ($\frac{(2^2-1^2)+(4^2-3^2)+...+(30^2-29^2)+(1000-31^2)}{2}$). Adding the two values gives $231+252=483$.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png