Difference between revisions of "Euler Product"

Line 1: Line 1:
The Euler Product is another way of defining the [[Riemann zeta function]] on a half plane <math>\Re(s) > 1</math>. It states that for all convergent sums, <math>\sum_{n=1}^{\infty}\frac{1}{n^s} = \prod_{p}^{\infty}{1-p^{-s}}^{-1}</math>.
+
The Euler Product is another way of defining the [[Riemann zeta function]] on a half plane <math>\Re(s) > 1</math>. It states that for all convergent sums, <math>\sum_{n=1}^{\infty}\frac{1}{n^s} = \prod_{p}^{\infty}{(1-p^{-s}})^{-1}</math>.

Revision as of 20:11, 13 August 2015

The Euler Product is another way of defining the Riemann zeta function on a half plane $\Re(s) > 1$. It states that for all convergent sums, $\sum_{n=1}^{\infty}\frac{1}{n^s} = \prod_{p}^{\infty}{(1-p^{-s}})^{-1}$.