Difference between revisions of "2011 AIME I Problems/Problem 8"
Katherinefok (talk | contribs) (→Solution) |
|||
Line 53: | Line 53: | ||
dot("$Z$",Z[1],NE);</asy></center> | dot("$Z$",Z[1],NE);</asy></center> | ||
− | ==Solution== | + | ==Solution 1== |
− | |||
− | |||
Note that the area is given by Heron's formula and it is <math>20\sqrt{221}</math>. Let <math>h_i</math> denote the length of the altitude dropped from vertex i. It follows that <math>h_b = \frac{40\sqrt{221}}{27}, h_c = \frac{40\sqrt{221}}{30}, h_a = \frac{40\sqrt{221}}{23}</math>. From similar triangles we can see that <math>\frac{27h}{h_a}+\frac{27h}{h_c} \le 27 \rightarrow h \le \frac{h_ah_c}{h_a+h_c}</math>. We can see this is true for any combination of a,b,c and thus the minimum of the upper bounds for h yields <math>h = \frac{40\sqrt{221}}{57} \rightarrow \boxed{318}</math>. | Note that the area is given by Heron's formula and it is <math>20\sqrt{221}</math>. Let <math>h_i</math> denote the length of the altitude dropped from vertex i. It follows that <math>h_b = \frac{40\sqrt{221}}{27}, h_c = \frac{40\sqrt{221}}{30}, h_a = \frac{40\sqrt{221}}{23}</math>. From similar triangles we can see that <math>\frac{27h}{h_a}+\frac{27h}{h_c} \le 27 \rightarrow h \le \frac{h_ah_c}{h_a+h_c}</math>. We can see this is true for any combination of a,b,c and thus the minimum of the upper bounds for h yields <math>h = \frac{40\sqrt{221}}{57} \rightarrow \boxed{318}</math>. | ||
− | Solution 2 | + | ==Solution 2== |
As from above, we can see that the length of the altitude from A is the longest. Thus the highest table is formed when X and Y meet up. Let the distance of this point from C be x, then the distance from B will be 23 - x. Let h be the height of the table. From similar triangles, we have <math>\frac{x}{23} = \frac{h}{h_c} = \frac{27h}{2A}</math> where A is the area of triangle ABC. Similarly, <math>\frac{23-x}{23}=\frac{h}{h_b}=\frac{30h}{2A}</math>. Therefore, <math>1-\frac{x}{23}=\frac{30h}{2A} \rightarrow1-\frac{27h}{2A}=\frac{30h}{2A}</math> and hence <math> h = \frac{2A}{57} = \frac{40\sqrt{221}}{57}\rightarrow \boxed{318}</math>. | As from above, we can see that the length of the altitude from A is the longest. Thus the highest table is formed when X and Y meet up. Let the distance of this point from C be x, then the distance from B will be 23 - x. Let h be the height of the table. From similar triangles, we have <math>\frac{x}{23} = \frac{h}{h_c} = \frac{27h}{2A}</math> where A is the area of triangle ABC. Similarly, <math>\frac{23-x}{23}=\frac{h}{h_b}=\frac{30h}{2A}</math>. Therefore, <math>1-\frac{x}{23}=\frac{30h}{2A} \rightarrow1-\frac{27h}{2A}=\frac{30h}{2A}</math> and hence <math> h = \frac{2A}{57} = \frac{40\sqrt{221}}{57}\rightarrow \boxed{318}</math>. |
Revision as of 16:23, 2 January 2016
Contents
Problem
In triangle , , , and . Points and are on with on , points and are on with on , and points and are on with on . In addition, the points are positioned so that , , and . Right angle folds are then made along , , and . The resulting figure is placed on a level floor to make a table with triangular legs. Let be the maximum possible height of a table constructed from triangle whose top is parallel to the floor. Then can be written in the form , where and are relatively prime positive integers and is a positive integer that is not divisible by the square of any prime. Find .
Solution 1
Note that the area is given by Heron's formula and it is . Let denote the length of the altitude dropped from vertex i. It follows that . From similar triangles we can see that . We can see this is true for any combination of a,b,c and thus the minimum of the upper bounds for h yields .
Solution 2
As from above, we can see that the length of the altitude from A is the longest. Thus the highest table is formed when X and Y meet up. Let the distance of this point from C be x, then the distance from B will be 23 - x. Let h be the height of the table. From similar triangles, we have where A is the area of triangle ABC. Similarly, . Therefore, and hence .
See also
2011 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.