Difference between revisions of "Brahmagupta's Formula"
(→Proof) |
|||
Line 10: | Line 10: | ||
− | === | + | ===Proofs=== |
If we draw <math>AC</math>, we find that <math>[ABCD]=\frac{ab\sin B}{2}+\frac{cd\sin D}{2}=\frac{ab\sin B+cd\sin D}{2}</math>. Since <math>B+D=180^\circ</math>, <math>\sin B=\sin D</math>. Hence, <math>[ABCD]=\frac{\sin B(ab+cd)}{2}</math>. Multiplying by 2 and squaring, we get: | If we draw <math>AC</math>, we find that <math>[ABCD]=\frac{ab\sin B}{2}+\frac{cd\sin D}{2}=\frac{ab\sin B+cd\sin D}{2}</math>. Since <math>B+D=180^\circ</math>, <math>\sin B=\sin D</math>. Hence, <math>[ABCD]=\frac{\sin B(ab+cd)}{2}</math>. Multiplying by 2 and squaring, we get: | ||
<cmath>4[ABCD]^2=\sin^2 B(ab+cd)^2</cmath> | <cmath>4[ABCD]^2=\sin^2 B(ab+cd)^2</cmath> |
Revision as of 18:20, 15 January 2017
Brahmagupta's Formula is a formula for determining the area of a cyclic quadrilateral given only the four side lengths.
Definition
Given a cyclic quadrilateral with side lengths , , , , the area can be found as:
where is the semiperimeter of the quadrilateral.
Proofs
If we draw , we find that . Since , . Hence, . Multiplying by 2 and squaring, we get: Substituting results in By the Law of Cosines, . , so a little rearranging gives
Similar formulas
Bretschneider's formula gives a formula for the area of a non-cyclic quadrilateral given only the side lengths; applying Ptolemy's Theorem to Bretschneider's formula reduces it to Brahmagupta's formula.
Brahmagupta's formula reduces to Heron's formula by setting the side length .
A similar formula which Brahmagupta derived for the area of a general quadrilateral is where is the semiperimeter of the quadrilateral. What happens when the quadrilateral is cyclic?
Problems
Intermediate
- is a cyclic quadrilateral that has an inscribed circle. The diagonals of intersect at . If and then the area of the inscribed circle of can be expressed as , where and are relatively prime positive integers. Determine . (Source)