Difference between revisions of "2009 AMC 10B Problems/Problem 16"

(Solution 1)
(Solution 1)
Line 40: Line 40:
 
As <math>\triangle ABC</math> is equilateral, we have <math>\angle BAC = \angle BCA = 60^\circ</math>, hence <math>\angle OAC = \angle OCA = 30^\circ</math>. Then <math>\angle AOC = 120^\circ</math>, and from symmetry we have <math>\angle AOB = \angle COB = 60^\circ</math>. Finally this gives us <math>\angle ABO = \angle CBO = 30^\circ</math>.
 
As <math>\triangle ABC</math> is equilateral, we have <math>\angle BAC = \angle BCA = 60^\circ</math>, hence <math>\angle OAC = \angle OCA = 30^\circ</math>. Then <math>\angle AOC = 120^\circ</math>, and from symmetry we have <math>\angle AOB = \angle COB = 60^\circ</math>. Finally this gives us <math>\angle ABO = \angle CBO = 30^\circ</math>.
  
We know that <math>DO = AO</math>, as <math>D</math> lies on the circle. From <math>\triangle ABO</math> we also have <math>AO = BO \sin 30^\circ = \frac{BO}2</math>, Hence <math>DO = \frac{BO}2</math>, therefore <math>BD = BO - DO = \frac{BO}2</math>, and <math>\frac{BD}{BO} = \boxed{\frac 12}</math>.
+
We know that <math>DO = AO</math>, as <math>D</math> lies on the circle. From <math>\triangle ABO</math> we also have <math>AO = BO \sin 30^\circ = \frac{BO}2</math>, Hence <math>DO = \frac{BO}2</math>, therefore <math>BD = BO - DO = \frac{BO}2</math>, and <math>\frac{BD}{BO} = \boxed{\frac 12 \Longrightarrow B}</math>.
  
 
=== Solution 2 ===
 
=== Solution 2 ===

Revision as of 22:44, 17 January 2016

Problem

Points $A$ and $C$ lie on a circle centered at $O$, each of $\overline{BA}$ and $\overline{BC}$ are tangent to the circle, and $\triangle ABC$ is equilateral. The circle intersects $\overline{BO}$ at $D$. What is $\frac{BD}{BO}$?

$\text{(A) } \frac {\sqrt2}{3} \qquad \text{(B) } \frac {1}{2} \qquad \text{(C) } \frac {\sqrt3}{3} \qquad \text{(D) } \frac {\sqrt2}{2} \qquad \text{(E) } \frac {\sqrt3}{2}$

Solution

Solution 1

[asy] unitsize(1.5cm); defaultpen(0.8); pair B=(0,0), A=(3,0), C=3*dir(60), O=intersectionpoint( C -- (C+3*dir(-30)), A -- (A+3*dir(90)) ); pair D=intersectionpoint(B--O, circle(O,length(A-O))); draw(circle(O,length(A-O))); draw(A--B--C--O--A); draw(B--O); draw(rightanglemark(B,A,O)); draw(rightanglemark(B,C,O)); draw(A--C, dashed ); label("$B$",B,SW); label("$A$",A,S); label("$C$",C,NW); label("$O$",O,NE); label("$D$",D,(S+SSW)); [/asy]

As $\triangle ABC$ is equilateral, we have $\angle BAC = \angle BCA = 60^\circ$, hence $\angle OAC = \angle OCA = 30^\circ$. Then $\angle AOC = 120^\circ$, and from symmetry we have $\angle AOB = \angle COB = 60^\circ$. Finally this gives us $\angle ABO = \angle CBO = 30^\circ$.

We know that $DO = AO$, as $D$ lies on the circle. From $\triangle ABO$ we also have $AO = BO \sin 30^\circ = \frac{BO}2$, Hence $DO = \frac{BO}2$, therefore $BD = BO - DO = \frac{BO}2$, and $\frac{BD}{BO} = \boxed{\frac 12 \Longrightarrow B}$.

Solution 2

[asy] unitsize(1.5cm); defaultpen(0.8); pair B=(0,0), A=(3,0), C=3*dir(60), O=intersectionpoint( C -- (C+3*dir(-30)), A -- (A+3*dir(90)) ); pair D=intersectionpoint(B--O, circle(O,length(A-O))); draw(circle(O,length(A-O))); draw(A--B--C--O--A); draw(B--O); draw(rightanglemark(B,A,O)); draw(rightanglemark(B,C,O)); draw(A--C--D--A, dashed ); pair Sp = intersectionpoint(D--O,A--C); label("$B$",B,SW); label("$A$",A,S); label("$C$",C,NW); label("$O$",O,NE); label("$D$",D,(S+SSW)); label("$S$",Sp,(S+SSW)); [/asy]

As in the previous solution, we find out that $\angle AOB = \angle COB = 60^\circ$. Hence $\triangle AOD$ and $\triangle COD$ are both equilateral.

We then have $\angle SCD = \angle SAD = 30^\circ$, hence $D$ is the incenter of $\triangle ABC$, and as $\triangle ABC$ is equilateral, $D$ is also its centroid. Hence $2 \cdot SD = BD$, and as $SD = SO$, we have $2\cdot SD = SD + SO = OD$, therefore $BD=OD$, and as before we conclude that $\frac{BD}{BO} = \boxed{\frac 12}$.

See Also

2009 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png