Difference between revisions of "2015 USAJMO Problems/Problem 4"
(→Solution: added latex) |
Futurewriter (talk | contribs) (→Solution) |
||
Line 7: | Line 7: | ||
<math>F(2x)=F(x)+[F(x)-F(0)]=2F(x)</math>, | <math>F(2x)=F(x)+[F(x)-F(0)]=2F(x)</math>, | ||
<math>F(3x)=F(2x)+[F(2x)-F(x)]=3F(x)</math>. | <math>F(3x)=F(2x)+[F(2x)-F(x)]=3F(x)</math>. | ||
− | Easily, by induction, <math>F(nx)=nF(x)</math> for all integers <math> | + | Easily, by induction, <math>F(nx)=nF(x)</math> for all integers <math>n</math>. |
Therefore, for nonzero integer m, <math>(1/m)F(mx)=F(x)</math> , namely <math>F(x/m)=(1/m)F(x)</math> | Therefore, for nonzero integer m, <math>(1/m)F(mx)=F(x)</math> , namely <math>F(x/m)=(1/m)F(x)</math> | ||
Hence <math>F(n/m)=(n/m)F(1)</math>. Let <math>F(1)=k</math>, we obtain <math>F(x)=kx</math>, where <math>k</math> is the slope of the linear functions, and <math>f(x)=kx+C</math>. | Hence <math>F(n/m)=(n/m)F(1)</math>. Let <math>F(1)=k</math>, we obtain <math>F(x)=kx</math>, where <math>k</math> is the slope of the linear functions, and <math>f(x)=kx+C</math>. |
Revision as of 23:15, 14 April 2016
Problem
Find all functions such thatfor all rational numbers that form an arithmetic progression. ( is the set of all rational numbers.)
Solution
According to the given, , where x and a are rational. Likewise . Hence , namely . Let , then consider , where .
, . Easily, by induction, for all integers . Therefore, for nonzero integer m, , namely Hence . Let , we obtain , where is the slope of the linear functions, and .