Difference between revisions of "1984 AIME Problems/Problem 9"
Chezbgone2 (talk | contribs) (→Solution) |
m (→Solution) |
||
Line 65: | Line 65: | ||
</asy></center> | </asy></center> | ||
− | Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. | + | Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. Because the problem does not specify, we can safely assume both <math>ABC</math> and <math>ABD</math> are isosceles triangles. Thus, the height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron. So, <math>h = \frac{1}{2} (8) = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = \boxed{020}</math>. |
== See also == | == See also == |
Revision as of 15:48, 16 September 2015
Problem
In tetrahedron , edge
has length 3 cm. The area of face
is
and the area of face
is
. These two faces meet each other at a
angle. Find the volume of the tetrahedron in
.
Solution
![[asy] /* modified version of olympiad modules */ import three; real markscalefactor = 0.03; path3 rightanglemark(triple A, triple B, triple C, real s=8) { triple P,Q,R; P=s*markscalefactor*unit(A-B)+B; R=s*markscalefactor*unit(C-B)+B; Q=P+R-B; return P--Q--R; } path3 anglemark(triple A, triple B, triple C, real t=8 ... real[] s) { triple M,N,P[],Q[]; path3 mark; int n=s.length; M=t*markscalefactor*unit(A-B)+B; N=t*markscalefactor*unit(C-B)+B; for (int i=0; i<n; ++i) { P[i]=s[i]*markscalefactor*unit(A-B)+B; Q[i]=s[i]*markscalefactor*unit(C-B)+B; } mark=arc(B,M,N); for (int i=0; i<n; ++i) { if (i%2==0) { mark=mark--reverse(arc(B,P[i],Q[i])); } else { mark=mark--arc(B,P[i],Q[i]); } } if (n%2==0 && n!=0) mark=(mark--B--P[n-1]); else if (n!=0) mark=(mark--B--Q[n-1]); else mark=(mark--B--cycle); return mark; } size(200); import three; defaultpen(black+linewidth(0.7)); pen small = fontsize(10); triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0); currentprojection=perspective(16,-10,8); draw(surface(A--B--C--cycle),rgb(0.6,0.7,0.6),nolight); draw(surface(A--B--D--cycle),rgb(0.7,0.6,0.6),nolight); /* draw pyramid - other lines + angles */ draw(A--B--C--A--D--B--D--C); draw(D--Da--Db--cycle); draw(rightanglemark(D,Da,Db));draw(rightanglemark(A,Db,D));draw(anglemark(Da,Db,D,15)); /* labeling points */ label("$A$",A,SW);label("$B$",B,S);label("$C$",C,S);label("$D$",D,N);label("$30^{\circ}$",Db+(0,.35,0.08),(1.5,1.2),small); label("$3$",(A+B)/2,S); label("$15\mathrm{cm}^2$",(Db+C)/2+(0,-0.5,-0.1),NE,small); label("$12\mathrm{cm}^2$",(A+D)/2,NW,small); [/asy]](http://latex.artofproblemsolving.com/c/e/a/ceabcb49396ab28000e1343ca6499fb8ae910ebb.png)
Position face on the bottom. Since
, we find that
. Because the problem does not specify, we can safely assume both
and
are isosceles triangles. Thus, the height of
forms a
with the height of the tetrahedron. So,
. The volume of the tetrahedron is thus
.
See also
1984 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |