Difference between revisions of "2001 AIME II Problems/Problem 15"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Let <math>EFGH</math>, <math>EFDC</math>, and <math>EHBC</math> be three adjacent square faces of a cube, for which <math>EC = 8</math>, and let <math>A</math> be the eighth vertex of the cube. Let <math>I</math>, <math>J</math>, and <math>K</math>, be the points on <math>\overline{EF}</math>, <math>\overline{EH}</math>, and <math>\overline{EC}</math>, respectively, so that <math>EI = EJ = EK = 2</math>. A solid <math>S</math> is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to <math>\overline{AE}</math>, and containing the edges, <math>\overline{IJ}</math>, <math>\overline{JK}</math>, and <math>\overline{KI}</math>. The surface area of <math>S</math>, including the walls of the tunnel, is <math>m + n\sqrt {p}</math>, where <math>m</math>, <math>n</math>, and <math>p</math> are positive integers and <math>p</math> is not divisible by the square of any prime. Find <math>m + n + p</math>. | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2001|n=II|num-b=14|after=Last Question}} |
Revision as of 23:46, 19 November 2007
Problem
Let , , and be three adjacent square faces of a cube, for which , and let be the eighth vertex of the cube. Let , , and , be the points on , , and , respectively, so that . A solid is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to , and containing the edges, , , and . The surface area of , including the walls of the tunnel, is , where , , and are positive integers and is not divisible by the square of any prime. Find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2001 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |