Difference between revisions of "2015 AIME II Problems/Problem 7"
(→Solution #2) |
(→Solution #2) |
||
Line 28: | Line 28: | ||
==Solution #2== | ==Solution #2== | ||
− | Diagram: | + | Diagram: |
+ | |||
(Diagram goes here) | (Diagram goes here) | ||
− | + | ||
− | Similar triangles can also solve the problem. | + | Similar triangles can also solve the problem. |
− | First, solve for the area of the triangle. <math>[ABC] = 90</math>. This can be done by Heron's Formula or placing an <math>8-15-17</math> right triangle on <math>BC</math> and solving. (The <math>8</math> side would be collinear with line <math>AB</math>) | + | |
+ | First, solve for the area of the triangle. <math>[ABC] = 90</math>. This can be done by Heron's Formula or placing an <math>8-15-17</math> right triangle on <math>BC</math> and solving. (The <math>8</math> side would be collinear with line <math>AB</math>) | ||
+ | |||
After finding the area, solve for the altitude to <math>BC</math>. Let <math>E</math> be the intersection of the altitude from <math>A</math> and side <math>BC</math>. Then <math>AE = \frac{36}{5}</math>. | After finding the area, solve for the altitude to <math>BC</math>. Let <math>E</math> be the intersection of the altitude from <math>A</math> and side <math>BC</math>. Then <math>AE = \frac{36}{5}</math>. | ||
− | Solving for <math>BE</math> using the Pythagorean Formula, we get <math>BE = \frac{48}{5}</math>. We then know that <math>CE = \frac{77}{5}</math>. | + | Solving for <math>BE</math> using the Pythagorean Formula, we get <math>BE = \frac{48}{5}</math>. We then know that <math>CE = \frac{77}{5}</math>. |
− | Now consider the rectangle <math>PQRS</math>. Since <math>SR</math> is collinear with <math>BC</math> and parallel to <math>PQ</math>, <math>PQ</math> is parallel to <math>BC</math> meaning <math>\Delta APQ</math> is similar to <math>\Delta ABC</math>. | + | |
− | Let <math>F</math> be the intersection between <math>AE</math> and <math>PQ</math>. By the similar triangles, we know that <math>\frac{PF}{FQ}=\frac{BE}{EC} = \frac{48}{77}</math>. Since <math>PF+FQ=PQ=\omega</math>. We can solve for <math>PF</math> and <math>FQ</math> in terms of <math>\omega</math>. We get that <math>PF=\frac{48}{125} \omega</math> and <math>FQ=\frac{77}{125} \omega</math>. | + | Now consider the rectangle <math>PQRS</math>. Since <math>SR</math> is collinear with <math>BC</math> and parallel to <math>PQ</math>, <math>PQ</math> is parallel to <math>BC</math> meaning <math>\Delta APQ</math> is similar to <math>\Delta ABC</math>. |
+ | |||
+ | Let <math>F</math> be the intersection between <math>AE</math> and <math>PQ</math>. By the similar triangles, we know that <math>\frac{PF}{FQ}=\frac{BE}{EC} = \frac{48}{77}</math>. Since <math>PF+FQ=PQ=\omega</math>. We can solve for <math>PF</math> and <math>FQ</math> in terms of <math>\omega</math>. We get that <math>PF=\frac{48}{125} \omega</math> and <math>FQ=\frac{77}{125} \omega</math>. | ||
+ | |||
Let's work with <math>PF</math>. We know that <math>PQ</math> is parallel to <math>BC</math> so <math>\Delta APF</math> is similar to <math>\Delta ABE</math>. We can set up the proportion:\\ | Let's work with <math>PF</math>. We know that <math>PQ</math> is parallel to <math>BC</math> so <math>\Delta APF</math> is similar to <math>\Delta ABE</math>. We can set up the proportion:\\ | ||
<math>\frac{AF}{PF}=\frac{AE}{BE}=\frac{3}{4}</math>. Solving for <math>AF</math>, <math>AF = \frac{3}{4} PF = \frac{3}{4} \cdot \frac{48}{125} \omega = \frac{36}{125} \omega</math>. | <math>\frac{AF}{PF}=\frac{AE}{BE}=\frac{3}{4}</math>. Solving for <math>AF</math>, <math>AF = \frac{3}{4} PF = \frac{3}{4} \cdot \frac{48}{125} \omega = \frac{36}{125} \omega</math>. | ||
− | We can solve for <math>PS</math> then since we know that <math>PS=FE</math> and <math>FE= AE - AF = \frac{36}{5} - \frac{36}{125} \omega</math>. | + | |
− | Therefore, <math>[PQRS] = PQ \cdot PS = \omega (\frac{36}{5} - \frac{36}{125} \omega) = \frac{36}{5}\omega - \frac{36}{125} \omega^2</math>. | + | We can solve for <math>PS</math> then since we know that <math>PS=FE</math> and <math>FE= AE - AF = \frac{36}{5} - \frac{36}{125} \omega</math>. |
+ | |||
+ | Therefore, <math>[PQRS] = PQ \cdot PS = \omega (\frac{36}{5} - \frac{36}{125} \omega) = \frac{36}{5}\omega - \frac{36}{125} \omega^2</math>. | ||
+ | |||
This means that <math>\beta = \frac{36}{125} \Rightarrow (m,n) = (36,125) \Rightarrow m+n = \boxed{161}</math>. | This means that <math>\beta = \frac{36}{125} \Rightarrow (m,n) = (36,125) \Rightarrow m+n = \boxed{161}</math>. | ||
Revision as of 12:39, 29 March 2015
Contents
Problem
Triangle has side lengths
,
, and
. Rectangle
has vertex
on
, vertex
on
, and vertices
and
on
. In terms of the side length
, the area of
can be expressed as the quadratic polynomial
Area() =
.
Then the coefficient , where
and
are relatively prime positive integers. Find
.
Solution
If , the area of rectangle
is
, so
and . If
, we can reflect
over PQ,
over
, and
over
to completely cover rectangle
, so the area of
is half the area of the triangle. Using Heron's formula, since
,
so
and
so the answer is .
Solution #2
Diagram:
(Diagram goes here)
Similar triangles can also solve the problem.
First, solve for the area of the triangle. . This can be done by Heron's Formula or placing an
right triangle on
and solving. (The
side would be collinear with line
)
After finding the area, solve for the altitude to . Let
be the intersection of the altitude from
and side
. Then
.
Solving for
using the Pythagorean Formula, we get
. We then know that
.
Now consider the rectangle . Since
is collinear with
and parallel to
,
is parallel to
meaning
is similar to
.
Let be the intersection between
and
. By the similar triangles, we know that
. Since
. We can solve for
and
in terms of
. We get that
and
.
Let's work with . We know that
is parallel to
so
is similar to
. We can set up the proportion:\\
. Solving for
,
.
We can solve for then since we know that
and
.
Therefore, .
This means that .
See also
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.