Difference between revisions of "2015 AMC 12A Problems/Problem 14"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | What is the value of <math>a</math> for which <math>\frac{1}{\text{log}_2a} + \frac{1}{\text{log}_3a} + \frac{1}{\text{log}_4a} = 1</math>? | + | <!-- don't remove the following tag, for PoTW on the Wiki front page--><onlyinclude>What is the value of <math>a</math> for which <math>\frac{1}{\text{log}_2a} + \frac{1}{\text{log}_3a} + \frac{1}{\text{log}_4a} = 1</math>?<!-- don't remove the following tag, for PoTW on the Wiki front page--></onlyinclude> |
<math> \textbf{(A)}\ 9\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 36</math> | <math> \textbf{(A)}\ 9\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 36</math> |
Revision as of 18:14, 11 November 2015
Problem
What is the value of for which ?
Solution
We use the change of base formula to show that Thus, our equation becomes which becomes after combining: Hence , and the answer is
See Also
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |