Difference between revisions of "2015 AIME II Problems/Problem 4"
XXQw3rtyXx (talk | contribs) (→Solution) |
m (→Solution) |
||
Line 9: | Line 9: | ||
Subtract the two bases and divide to find that <math>ED</math> is <math>\log 8</math>. The altitude can be expressed as <math>\frac{4}{3} log 8</math>. Therefore, the two legs are <math>\frac{5}{3} \log 8</math>, or <math>\log 32</math>. | Subtract the two bases and divide to find that <math>ED</math> is <math>\log 8</math>. The altitude can be expressed as <math>\frac{4}{3} log 8</math>. Therefore, the two legs are <math>\frac{5}{3} \log 8</math>, or <math>\log 32</math>. | ||
− | The perimeter is thus <math>\log 32 + \log 32 + \log 192 + \log 3</math> which is <math>\log 2^{16} 3^2</math>. So <math>p + q = \boxed{ | + | The perimeter is thus <math>\log 32 + \log 32 + \log 192 + \log 3</math> which is <math>\log 2^{16} 3^2</math>. So <math>p + q = \boxed{018}</math> |
{{AIME box|year=2015|n=II|num-b=3|num-a=5}} | {{AIME box|year=2015|n=II|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 16:07, 26 March 2015
Problem
In an isosceles trapezoid, the parallel bases have lengths and
, and the altitude to these bases has length
. The perimeter of the trapezoid can be written in the form
, where
and
are positive integers. Find
.
Solution
Call the trapezoid with
as the smaller base and
as the longer. The point where an altitude intersects the larger base be
where
is closer to
.
Subtract the two bases and divide to find that is
. The altitude can be expressed as
. Therefore, the two legs are
, or
.
The perimeter is thus which is
. So
2015 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.