Difference between revisions of "2015 AIME I Problems/Problem 11"

(Created page with "==Problem== Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</mat...")
 
m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</math> and <math>\angle C</math>. Suppose <math>BI=8</math>. Find the smallest possible permineter of <math>\triangle ABC</math>.
+
Triangle <math>ABC</math> has positive integer side lengths with <math>AB=AC</math>. Let <math>I</math> be the intersection of the bisectors of <math>\angle B</math> and <math>\angle C</math>. Suppose <math>BI=8</math>. Find the smallest possible perimeter of <math>\triangle ABC</math>.
  
 
==See Also==
 
==See Also==
 
{{AIME box|year=2015|n=I|num-b=10|num-a=12}}
 
{{AIME box|year=2015|n=I|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:55, 20 March 2015

Problem

Triangle $ABC$ has positive integer side lengths with $AB=AC$. Let $I$ be the intersection of the bisectors of $\angle B$ and $\angle C$. Suppose $BI=8$. Find the smallest possible perimeter of $\triangle ABC$.

See Also

2015 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png