Difference between revisions of "2010 AMC 8 Problems/Problem 17"
(→Problem) |
(→Problem) |
||
Line 17: | Line 17: | ||
draw((5,1)--(6,1),linewidth(1.2pt)); | draw((5,1)--(6,1),linewidth(1.2pt)); | ||
draw((6,1)--(6,0),linewidth(1.2pt)); | draw((6,1)--(6,0),linewidth(1.2pt)); | ||
− | draw((1,1)--(5,1),linewidth(1.2pt | + | draw((1,1)--(5,1),linewidth(1.2pt)); |
− | + | draw((1,1)--(1,0),linewidth(1.2pt)); | |
− | + | draw((2,2)--(2,0),linewidth(1.2pt)); | |
− | + | draw((3,2)--(3,0),linewidth(1.2pt)); | |
− | draw((2,2)--(2,0),linewidth(1.2pt | + | draw((4,2)--(4,0),linewidth(1.2pt)); |
− | + | draw((5,1)--(5,0),linewidth(1.2pt)); | |
− | draw((3,2)--(3,0),linewidth(1.2pt | ||
− | |||
− | draw((4,2)--(4,0),linewidth(1.2pt | ||
− | |||
− | draw((5,1)--(5,0),linewidth(1.2pt | ||
− | |||
draw((0,0)--(5,1.5),linewidth(1.2pt)); | draw((0,0)--(5,1.5),linewidth(1.2pt)); | ||
dot((0,0),ds); label("$P$", (-0.23,-0.26),NE*lsf); | dot((0,0),ds); label("$P$", (-0.23,-0.26),NE*lsf); |
Revision as of 12:39, 19 March 2015
Problem
The diagram shows an octagon consisting of unit squares. The portion below is a unit square and a triangle with base . If bisects the area of the octagon, what is the ratio ?
Solution
We see that half the area of the octagon is . We see that the triangle area is . That means that . Meaning,
See Also
2010 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.