Difference between revisions of "2015 AMC 10B Problems/Problem 14"
(→Solution) |
|||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
Expanding the equation and combining like terms results in <math>2x^2-(a+2b+c)x+(ab+bc)=0</math>. By Vieta's formulae the sum of the roots is <math>\dfrac{-[-(a+2b+c)]}{2}=\dfrac{a+2b+c}{2}</math>. To maximize this expression we want <math>b</math> to be the largest, and from there we can assign the next highest values to <math>a</math> and <math>c</math>. So let <math>b=9</math>, <math>a=8</math>, and <math>c=7</math>. Then the answer is <math>\dfrac{8+18+7}{2}=\boxed{\textbf{(D)} 16.5}</math>. | Expanding the equation and combining like terms results in <math>2x^2-(a+2b+c)x+(ab+bc)=0</math>. By Vieta's formulae the sum of the roots is <math>\dfrac{-[-(a+2b+c)]}{2}=\dfrac{a+2b+c}{2}</math>. To maximize this expression we want <math>b</math> to be the largest, and from there we can assign the next highest values to <math>a</math> and <math>c</math>. So let <math>b=9</math>, <math>a=8</math>, and <math>c=7</math>. Then the answer is <math>\dfrac{8+18+7}{2}=\boxed{\textbf{(D)} 16.5}</math>. | ||
+ | |||
+ | ==Solution 2== | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2015|ab=B|num-b=13|num-a=15}} | {{AMC10 box|year=2015|ab=B|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 10:50, 1 January 2016
Contents
Problem
Let , , and be three distinct one-digit numbers. What is the maximum value of the sum of the roots of the equation ?
Solution
Expanding the equation and combining like terms results in . By Vieta's formulae the sum of the roots is . To maximize this expression we want to be the largest, and from there we can assign the next highest values to and . So let , , and . Then the answer is .
Solution 2
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.