Difference between revisions of "2015 AMC 10B Problems/Problem 25"
m |
m (Removed slanted $\ge$ and $\le$) |
||
Line 11: | Line 11: | ||
First consider the bound of the variable <math>a</math>. Since <math>\frac{1}{a}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2},</math> we have <math>a>2</math>, or <math>a\geqslant3</math>. | First consider the bound of the variable <math>a</math>. Since <math>\frac{1}{a}<\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2},</math> we have <math>a>2</math>, or <math>a\geqslant3</math>. | ||
− | Also note that <math>c\ | + | Also note that <math>c\ge b\ge a>0</math>, we have <math>\frac{1}{a}>\frac{1}{b}>\frac{1}{c}</math>. |
− | Thus, <math>\frac{1}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ | + | Thus, <math>\frac{1}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge \frac{3}{a}</math>, so <math>a\le 6</math>. |
So we have <math>a=3, 4, 5</math> or <math>6</math>. | So we have <math>a=3, 4, 5</math> or <math>6</math>. | ||
Line 18: | Line 18: | ||
Before the casework, let's consider the possible range for <math>b</math> if <math>\frac{1}{b}+\frac{1}{c}=k>0</math>. | Before the casework, let's consider the possible range for <math>b</math> if <math>\frac{1}{b}+\frac{1}{c}=k>0</math>. | ||
− | From <math>\frac{1}{b}<k</math>, we have <math>b>\frac{1}{k}</math>. From <math>\frac{2}{b}\ | + | From <math>\frac{1}{b}<k</math>, we have <math>b>\frac{1}{k}</math>. From <math>\frac{2}{b}\ge \frac{1}{b}+\frac{1}{c}=k</math>, we have <math>b\le \frac{2}{k}</math>. Thus <math>\frac{1}{k}<b\le \frac{2}{k}</math> |
When <math>a=3</math>, <math>\frac{1}{b}+\frac{1}{c}=\frac{1}{6}</math>, so <math>b=7, 8, \cdots, 12</math>. The solutions we find are <math>(a, b, c)=(3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15), (3, 12, 12)</math>, for a total of <math>5</math> solutions. | When <math>a=3</math>, <math>\frac{1}{b}+\frac{1}{c}=\frac{1}{6}</math>, so <math>b=7, 8, \cdots, 12</math>. The solutions we find are <math>(a, b, c)=(3, 7, 42), (3, 8, 24), (3, 9, 18), (3, 10, 15), (3, 12, 12)</math>, for a total of <math>5</math> solutions. |
Revision as of 14:04, 21 March 2015
Problem
A rectangular box measures , where , , and are integers and . The volume and the surface area of the box are numerically equal. How many ordered triples are possible?
Solution
The surface area is , the volumn is , so .
Divide both sides by , we get that
First consider the bound of the variable . Since we have , or .
Also note that , we have . Thus, , so .
So we have or .
Before the casework, let's consider the possible range for if .
From , we have . From , we have . Thus
When , , so . The solutions we find are , for a total of solutions.
When , , so . The solutions we find are , for a total of solutions.
When , , so . The only solution in this case is .
When , is forced to be , and thus .
Thus, our answer is
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.