Difference between revisions of "Mock AIME 3 2006-2007 Problems/Problem 11"
(→Problem) |
|||
Line 2: | Line 2: | ||
If <math>x</math> and <math>y</math> are real numbers such that <math>2xy+2x^2=6+x^2+y^2</math> find the minimum value of <math>(x^2+y^2)^2</math>. | If <math>x</math> and <math>y</math> are real numbers such that <math>2xy+2x^2=6+x^2+y^2</math> find the minimum value of <math>(x^2+y^2)^2</math>. | ||
− | == Solution == | + | == Solution 1 == |
Line 27: | Line 27: | ||
So the desired minimum is <math>\frac{36}{2}=\boxed{018}</math> | So the desired minimum is <math>\frac{36}{2}=\boxed{018}</math> | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | Since <math>x^2 + y^2 \ge 0</math>,finding the minimum value of <math>(x^2 + y^2)^2</math> is similar to finding that of <math>x^2 + y^2</math>. Let <math>x^2 + y^2 = a</math>, where <math>a</math> is the minimum value. We can rewrite this as <math>y^2 = -x^2 + a</math> and <math>y = \sqrt{-x^2 + a}</math>. | ||
+ | <cmath>2xy + 2x^2 = x^2 + y^2 + 6</cmath><cmath>2x(\sqrt{-x^2 + a}) + 2x^2 = x^2 + (-x^2 + a) + 6</cmath><cmath>2x(\sqrt{-x^2 + a}) + 2x^2 = a + 6</cmath><cmath>2x^2 - (a + 6) = -2x(\sqrt{x^2 + a})</cmath>. | ||
+ | <cmath>4x^2 - 4(a + 6)x^2 + (a + 6)^2 = 4x^2(-x^2 + a)</cmath>. | ||
+ | <cmath>8x^4 - 8(a + 3)x^2 + (a + 6)^2 = 0</cmath>. | ||
+ | We want this polynomial to factor in the form <math>(x^2 - r)(x^2 - s)</math>, where at least one of <math>r, s \ge 0</math>. ( If <math>r, s < 0</math>, the equations <math>x^2 = r</math> and <math>x^2 = s</math> would have no real solutions). Since <math>a > 0</math>, both <math>-8(a + 3) > 0</math> and <math>(a + 6)^2 > 0</math>, so <math>r, s > 0</math>. | ||
+ | |||
+ | We can now use the “discriminant” to determine acceptable values of <math>a</math>. <math>(8(a + 3))^2 - 4\cdot 8 \cdot (a + 6)^2 \ge 0</math> simplifies to <math>a^2 \ge 18</math>. | ||
+ | Since <math>a^2 = (x^2 + y^2)^2</math>, the minimum value of <math>(x^2 + y^2)^2 = \boxed{18}</math>. |
Revision as of 14:15, 8 November 2019
Problem
If and are real numbers such that find the minimum value of .
Solution 1
Factoring the LHS gives .
Now converting to polar:
Since we want to find ,
Since we want the minimum of this expression, we need to maximize the denominator. The maximum of the sine function is 1
(one value of which produces this maximum is )
So the desired minimum is
Solution 2
Since ,finding the minimum value of is similar to finding that of . Let , where is the minimum value. We can rewrite this as and . . . . We want this polynomial to factor in the form , where at least one of . ( If , the equations and would have no real solutions). Since , both and , so .
We can now use the “discriminant” to determine acceptable values of . simplifies to . Since , the minimum value of .