Difference between revisions of "1993 AIME Problems/Problem 15"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | Let <math>\overline{CH}</math> be an altitude of <math>\triangle ABC</math>. Let <math>R\,</math> and <math>S\,</math> be the points where the circles inscribed in the triangles <math>ACH\,</math> and <math>BCH^{}_{}</math> are tangent to <math>\overline{CH}</math>. If <math>AB = 1995\,</math>, <math>AC = 1994\,</math>, and <math>BC = 1993\,</math>, then <math>RS\,</math> can be expressed as <math>m/n\,</math>, where <math>m\,</math> and <math>n\,</math> are relatively prime integers. Find <math>m + n\,</math>. | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=1993|num-b=14|after=Last question}} |
Revision as of 23:28, 25 March 2007
Problem
Let be an altitude of . Let and be the points where the circles inscribed in the triangles and are tangent to . If , , and , then can be expressed as , where and are relatively prime integers. Find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |