Difference between revisions of "2015 AMC 10A Problems/Problem 13"

Line 6: Line 6:
  
 
==Solution==
 
==Solution==
Let Claudia have <math>x</math> 5-cent coins and <math>\left( 12 - x \right)</math> 10-cent coins. It is easily observed that any multiple of <math>5</math> between <math>5</math> and <math>5x + 10(12 - x) = 120 - 5x</math> inclusive can be obtained by a combination of coins. Thus, <math>24 - x = 17</math> combinations can be made, so <math>x = 7</math>. But the answer is not <math>7,</math> because we are asked for the number of 10-cent coins, which is <math>12 - 7 = \boxed{5}</math>. <math>\textbf{(C)}</math>
+
Let Claudia have <math>x</math> 5-cent coins and <math>\left( 12 - x \right)</math> 10-cent coins. It is easily observed that any multiple of <math>5</math> between <math>5</math> and <math>5x + 10(12 - x) = 120 - 5x</math> inclusive can be obtained by a combination of coins. Thus, <math>24 - x = 17</math> combinations can be made, so <math>x = 7</math>. But the answer is not <math>7,</math> because we are asked for the number of 10-cent coins, which is <math>12 - 7 = \boxed{\textbf{(C) } 5}</math>
  
  

Revision as of 22:59, 9 February 2015

Problem 13

Claudia has 12 coins, each of which is a 5-cent coin or a 10-cent coin. There are exactly 17 different values that can be obtained as combinations of one or more of her coins. How many 10-cent coins does Claudia have?

$\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7$


Solution

Let Claudia have $x$ 5-cent coins and $\left( 12 - x \right)$ 10-cent coins. It is easily observed that any multiple of $5$ between $5$ and $5x + 10(12 - x) = 120 - 5x$ inclusive can be obtained by a combination of coins. Thus, $24 - x = 17$ combinations can be made, so $x = 7$. But the answer is not $7,$ because we are asked for the number of 10-cent coins, which is $12 - 7 = \boxed{\textbf{(C) } 5}$


Alternate Solution

Since the coins are 5-cent and 10-cent, all possible values that can be made will be multiples of $5.$ To have exactly $17$ different multiples of $5,$ we will need to make up to $85$ cents. If all twelve coins were 5-cent coins, we will have $60$ cents possible. Each trade of a 5-cent coin for a 10-cent coin will gain $5$ cents, and as we need to gain $25$ cents, the answer is $\boxed{\textbf{(C) } 5}$


See Also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png