Difference between revisions of "2015 AMC 10A Problems/Problem 1"
(→Solution) |
(→Solution) |
||
Line 8: | Line 8: | ||
==Solution== | ==Solution== | ||
<math>(2^0-1+5^2-0)^{-1}\times5</math> | <math>(2^0-1+5^2-0)^{-1}\times5</math> | ||
− | <math>=(1-1+\{25}-0)^{-1}\times5</math> | + | <math>=(1-1+\frac{1}{25}-0)^{-1}\times5</math> |
− | <math>={\frac{1}{25}}\times5</math> | + | <math>={\frac{1}{25}}^{-1}\times5</math> |
<math>=-25\times5</math> | <math>=-25\times5</math> | ||
<math>=-125\implies{\boxed{\textbf{(C)}\ -5}}</math> | <math>=-125\implies{\boxed{\textbf{(C)}\ -5}}</math> |
Revision as of 22:49, 4 February 2015
- The following problem is from both the 2015 AMC 12A #1 and 2015 AMC 10A #1, so both problems redirect to this page.
Problem
What is the value of
$\textbf{(A)}\ -125\qquad\textbf{(B)}\ -120\qquad\textbf{(C)}\ \frac{1}{5}\qquad\textbf{(D)}}\ \frac{5}{24}\qquad\textbf{(E)}\ 25$ (Error compiling LaTeX. Unknown error_msg)
Solution
See Also
2015 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Problem |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.