Difference between revisions of "2015 AMC 12A Problems/Problem 11"
(Created page with "==Problem== On a sheet of paper, Isabella draws a circle of radius <math>2</math>, a circle of radius <math>3</math>, and all possible lines simultaneously tangent to both circl...") |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | On a sheet of paper, Isabella draws a circle of radius <math>2</math>, a circle of radius <math>3</math>, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly <math>k | + | On a sheet of paper, Isabella draws a circle of radius <math>2</math>, a circle of radius <math>3</math>, and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly <math>k \ge 0</math> lines. How many different values of <math>k</math> are possible? |
<math> \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6</math> | <math> \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6</math> |
Revision as of 00:35, 6 February 2015
Problem
On a sheet of paper, Isabella draws a circle of radius , a circle of radius , and all possible lines simultaneously tangent to both circles. Isabella notices that she has drawn exactly lines. How many different values of are possible?
$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}}\ 5\qquad\textbf{(E)}\ 6$ (Error compiling LaTeX. Unknown error_msg)
Solution
Isabella can get lines if the circles are concentric, if internally tangent, if overlapping, if externally tangent, and if non-overlapping and not externally tangent. There are values of .
See Also
2015 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |