Difference between revisions of "2015 AMC 10A Problems/Problem 16"

Line 6: Line 6:
  
 
==Solution==
 
==Solution==
 +
Our equations simplify to (after subtracting 4 from both sides):
 +
<cmath>y = x^2 - 4x,</cmath>
 +
<cmath>x = y^2 - 4y.</cmath>
 +
Subtract the equations to obtain <math>y - x = x^2 - y^2 - 4x + 4y</math>, so <math>x^2 - y^2 = 3x - 3y</math>. This factors as <math>(x - y)(x + y) = 3(x - y)</math>, and so because <math>x \neq y</math>, we have <math>x + y = 3</math>.
 +
 +
Add the equations to yield <math>x + y = x^2 + y^2 - 4(x + y)</math>. Hence, <math>x^2 + y^2 = 5(x + y) = 15</math>, so our answer is <math>\boxed{\textbf{(B)}}</math>.
 +
 +
==Solution 2==
 +
 
First simplify the equations  
 
First simplify the equations  
  

Revision as of 18:10, 4 February 2015

Problem

If $y+4 = (x-2)^2, x+4 = (y-2)^2$, and $x \neq y$, what is the value of $x^2+y^2$?

$\textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30}$

Solution

Our equations simplify to (after subtracting 4 from both sides): \[y = x^2 - 4x,\] \[x = y^2 - 4y.\] Subtract the equations to obtain $y - x = x^2 - y^2 - 4x + 4y$, so $x^2 - y^2 = 3x - 3y$. This factors as $(x - y)(x + y) = 3(x - y)$, and so because $x \neq y$, we have $x + y = 3$.

Add the equations to yield $x + y = x^2 + y^2 - 4(x + y)$. Hence, $x^2 + y^2 = 5(x + y) = 15$, so our answer is $\boxed{\textbf{(B)}}$.

Solution 2

First simplify the equations

$y+4=(x-2)^2$

$y+4=x^2-4x+4$

$y=x^2-4x$ and the the other equation will become $x=y^2-4y$

Substitute $y$ into $x=y^2-4y$ to get

$x=(x^2-4x)^2-4(x^2-4x)$

$x=(x^2-4x)(x^2-4x-4)$

$x=x(x-4)(x^2-4x-4)$

$1=x^3-8x^2+12x+16$

$0=x^3-8x^2+12x+15$