Difference between revisions of "2013 AMC 10A Problems/Problem 8"

m (Solution: ?)
m (removed extra spaces)
Line 2: Line 2:
  
 
What is the value of <math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}} ?</math>  
 
What is the value of <math>\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}} ?</math>  
 
 
  
 
<math> \textbf{(A)}\ -1 \qquad\textbf{(B)}\ 1  \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ 2013 \qquad\textbf{(E)}\ 2^{4024} </math>
 
<math> \textbf{(A)}\ -1 \qquad\textbf{(B)}\ 1  \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ 2013 \qquad\textbf{(E)}\ 2^{4024} </math>
 
  
 
==Solution==
 
==Solution==
 
 
  
 
Factoring out, we get: <math>\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)}</math>.   
 
Factoring out, we get: <math>\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)}</math>.   

Revision as of 18:16, 1 February 2020

Problem

What is the value of $\frac{2^{2014}+2^{2012}}{2^{2014}-2^{2012}} ?$

$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ 1  \qquad\textbf{(C)}\ \frac{5}{3} \qquad\textbf{(D)}\ 2013 \qquad\textbf{(E)}\ 2^{4024}$

Solution

Factoring out, we get: $\frac{2^{2012}(2^2 + 1)}{2^{2012}(2^2-1)}$.

Cancelling out the $2^{2012}$ from the numerator and denominator, we see that it simplifies to $\boxed{\textbf{(C) }\frac{5}{3}}$.

See Also

2013 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2013 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png