Difference between revisions of "1986 AHSME Problems/Problem 9"

(Created page with "==Problem== The product <math> \left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\ldots\left(1-\frac{1}{9^{2}}\right)\left(1-\frac{1}{10^{2}}\right)</math> equals <ma...")
 
(Added a solution with explanation)
 
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
 
+
Factor each term in the product as a difference of two squares, and group together all the terms that contain a <math>-</math> sign, and all those that contain a <math>+</math> sign. This gives <math>[(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{10})] \cdot [(1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})...(1+\frac{1}{10})] = [\frac{1}{2} \frac{2}{3} \frac{3}{4} ... \frac{9}{10}][\frac{3}{2} \frac{4}{3} \frac{5}{4} ... \frac{11}{10}] = \frac{1}{10} \cdot \frac{11}{2} = \frac{11}{20}</math>, which is <math>\boxed{C}</math>.
  
 
== See also ==
 
== See also ==

Latest revision as of 17:27, 1 April 2018

Problem

The product $\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\ldots\left(1-\frac{1}{9^{2}}\right)\left(1-\frac{1}{10^{2}}\right)$ equals

$\textbf{(A)}\ \frac{5}{12}\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ \frac{11}{20}\qquad \textbf{(D)}\ \frac{2}{3}\qquad \textbf{(E)}\ \frac{7}{10}$

Solution

Factor each term in the product as a difference of two squares, and group together all the terms that contain a $-$ sign, and all those that contain a $+$ sign. This gives $[(1-\frac{1}{2})(1-\frac{1}{3})(1-\frac{1}{4})...(1-\frac{1}{10})] \cdot [(1+\frac{1}{2})(1+\frac{1}{3})(1+\frac{1}{4})...(1+\frac{1}{10})] = [\frac{1}{2} \frac{2}{3} \frac{3}{4} ... \frac{9}{10}][\frac{3}{2} \frac{4}{3} \frac{5}{4} ... \frac{11}{10}] = \frac{1}{10} \cdot \frac{11}{2} = \frac{11}{20}$, which is $\boxed{C}$.

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png