Difference between revisions of "1987 AHSME Problems/Problem 20"
(Created page with "==Problem== Evaluate <math> \log_{10}(\tan 1^{\circ})+\log_{10}(\tan 2^{\circ})+\log_{10}(\tan 3^{\circ})+\cdots+\log_{10}(\tan 88^{\circ})+\log_{10}(\tan 89^{\circ}). </math> ...") |
(→Problem) |
||
Line 8: | Line 8: | ||
\textbf{(C)}\ \frac{1}{2}\log_{10}2\qquad | \textbf{(C)}\ \frac{1}{2}\log_{10}2\qquad | ||
\textbf{(D)}\ 1\qquad | \textbf{(D)}\ 1\qquad | ||
− | \textbf{(E)}\ \text{none of these} </math> | + | \textbf{(E)}\ \text{none of these} </math> |
+ | |||
+ | ==Solution== | ||
+ | Because <math>\tan x \tan (90^\circ - x) = \tan x \cot x = 1</math>, <math>\tan 45^\circ = 1</math>, and <math>\log a + \log b = \log {ab}</math>, the answer is <math>\log_{10} {\tan 1^\circ \tan 2^\circ \dots \tan 89^\circ} = \log_{10} 1 = 0.</math> <math>\boxed{\textbf{(A)}}.</math> | ||
== See also == | == See also == |
Revision as of 23:07, 16 April 2015
Problem
Evaluate
Solution
Because , , and , the answer is
See also
1987 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.