Difference between revisions of "2007 iTest Problems/Problem 17"

(Created page with "== Problem == If <math>x</math> and <math>y</math> are acute angles such that <math>x+y=\frac{\pi}{4}</math> and <math>\tan{y}=\frac{1}{6}</math>, find the value of <math>\tan{x...")
 
(Problem)
Line 8: Line 8:
 
\text{(D) }\frac{37\sqrt{3}+24}{33}\qquad
 
\text{(D) }\frac{37\sqrt{3}+24}{33}\qquad
 
\text{(E) }1\qquad
 
\text{(E) }1\qquad
\text{(F) }\frac{5}{7}\qquad
+
\text{(F) }\frac{5}{7}\qquad \\ </math>
\text{(G) }\frac{3}{7}\qquad
 
\text{(H) }6\qquad \\ </math>
 
  
<math>\text{(I) }\frac{1}{6}\qquad
+
<math>\text{(G) }\frac{3}{7}\qquad
 +
\text{(H) }6\qquad
 +
\text{(I) }\frac{1}{6}\qquad
 
\text{(J) }\frac{1}{2}\qquad
 
\text{(J) }\frac{1}{2}\qquad
 
\text{(K) }\frac{6}{7}\qquad
 
\text{(K) }\frac{6}{7}\qquad
\text{(L) }\frac{4}{7}\qquad
+
\text{(L) }\frac{4}{7}\qquad \\ </math>
\text{(M) }\sqrt{3}\qquad
+
 
 +
<math>\text{(M) }\sqrt{3}\qquad
 
\text{(N) }\frac{\sqrt{3}}{3}\qquad
 
\text{(N) }\frac{\sqrt{3}}{3}\qquad
 
\text{(O) }\frac{5}{6}\qquad
 
\text{(O) }\frac{5}{6}\qquad

Revision as of 21:25, 7 October 2014

Problem

If $x$ and $y$ are acute angles such that $x+y=\frac{\pi}{4}$ and $\tan{y}=\frac{1}{6}$, find the value of $\tan{x}$.

$\text{(A) }\frac{37\sqrt{2}-18}{71}\qquad \text{(B) }\frac{35\sqrt{2}-6}{71}\qquad \text{(C) }\frac{35\sqrt{3}+12}{33}\qquad \text{(D) }\frac{37\sqrt{3}+24}{33}\qquad \text{(E) }1\qquad \text{(F) }\frac{5}{7}\qquad \$ (Error compiling LaTeX. Unknown error_msg)

$\text{(G) }\frac{3}{7}\qquad \text{(H) }6\qquad \text{(I) }\frac{1}{6}\qquad \text{(J) }\frac{1}{2}\qquad \text{(K) }\frac{6}{7}\qquad \text{(L) }\frac{4}{7}\qquad \$ (Error compiling LaTeX. Unknown error_msg)

$\text{(M) }\sqrt{3}\qquad \text{(N) }\frac{\sqrt{3}}{3}\qquad \text{(O) }\frac{5}{6}\qquad \text{(P) }\frac{2}{3}\qquad \text{(Q) }\frac{1}{2007}\qquad\$ (Error compiling LaTeX. Unknown error_msg)

Solution