Difference between revisions of "1970 AHSME Problems/Problem 11"

(Created page with "== Problem == If two factors of <math>2x^3-hx+k</math> are <math>x+2</math> and <math>x-1</math>, the value of <math>|2h-3k| is </math>\text{(A) } 4\quad \text{(B) } 3\quad \tex...")
 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
If two factors of <math>2x^3-hx+k</math> are <math>x+2</math> and <math>x-1</math>, the value of <math>|2h-3k| is
+
If two factors of <math>2x^3-hx+k</math> are <math>x+2</math> and <math>x-1</math>, the value of <math>|2h-3k|</math> is
</math>\text{(A) } 4\quad
+
 
 +
<math>\text{(A) } 4\quad
 
\text{(B) } 3\quad
 
\text{(B) } 3\quad
 
\text{(C) } 2\quad
 
\text{(C) } 2\quad
 
\text{(D) } 1\quad
 
\text{(D) } 1\quad
\text{(E) } 0<math>
+
\text{(E) } 0</math>
  
 
== Solution ==
 
== Solution ==
</math>\fbox{E}$
+
<math>\fbox{E}</math>
  
 
== See also ==
 
== See also ==

Revision as of 20:10, 1 October 2014

Problem

If two factors of $2x^3-hx+k$ are $x+2$ and $x-1$, the value of $|2h-3k|$ is

$\text{(A) } 4\quad \text{(B) } 3\quad \text{(C) } 2\quad \text{(D) } 1\quad \text{(E) } 0$

Solution

$\fbox{E}$

See also

1970 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png