Difference between revisions of "1991 AHSME Problems/Problem 26"

m (Solution)
m (Problem)
Line 3: Line 3:
 
An <math>n</math>-digit positive integer is cute if its <math>n</math> digits are an arrangement of the set <math>\{1,2,...,n\}</math> and its first  
 
An <math>n</math>-digit positive integer is cute if its <math>n</math> digits are an arrangement of the set <math>\{1,2,...,n\}</math> and its first  
 
<math>k</math> digits form an integer that is divisible by <math>k</math>  , for  <math>k  = 1,2,...,n</math>. For example, <math>321</math> is a cute <math>3</math>-digit integer because <math>1</math> divides <math>3</math>, <math>2</math> divides <math>32</math>, and <math>3</math> divides <math>321</math>. Howmany cute <math>6</math>-digit integers are there?
 
<math>k</math> digits form an integer that is divisible by <math>k</math>  , for  <math>k  = 1,2,...,n</math>. For example, <math>321</math> is a cute <math>3</math>-digit integer because <math>1</math> divides <math>3</math>, <math>2</math> divides <math>32</math>, and <math>3</math> divides <math>321</math>. Howmany cute <math>6</math>-digit integers are there?
 +
 +
<math>\text{(A) } 0\quad
 +
\text{(B) } 1\quad
 +
\text{(C) } 2\quad
 +
\text{(D) } 3\quad
 +
\text{(E) } 4</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 15:37, 28 September 2014

Problem

An $n$-digit positive integer is cute if its $n$ digits are an arrangement of the set $\{1,2,...,n\}$ and its first $k$ digits form an integer that is divisible by $k$ , for $k  = 1,2,...,n$. For example, $321$ is a cute $3$-digit integer because $1$ divides $3$, $2$ divides $32$, and $3$ divides $321$. Howmany cute $6$-digit integers are there?

$\text{(A) } 0\quad \text{(B) } 1\quad \text{(C) } 2\quad \text{(D) } 3\quad \text{(E) } 4$

Solution

$\fbox{C}$

See also

1991 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png