Difference between revisions of "1967 AHSME Problems/Problem 4"

m (See also)
m (See also)
Line 9: Line 9:
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1967|num-b=3|num-a=5}}   
+
{{AHSME 40p box|year=1967|num-b=3|num-a=5}}   
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:35, 16 August 2023

Problem

Given $\frac{\log{a}}{p}=\frac{\log{b}}{q}=\frac{\log{c}}{r}=\log{x}$, all logarithms to the same base and $x \not= 1$. If $\frac{b^2}{ac}=x^y$, then $y$ is:

$\text{(A)}\ \frac{q^2}{p+r}\qquad\text{(B)}\ \frac{p+r}{2q}\qquad\text{(C)}\ 2q-p-r\qquad\text{(D)}\ 2q-pr\qquad\text{(E)}\ q^2-pr$


Solution

$\fbox{C}$

See also

1967 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png