Difference between revisions of "1966 AHSME Problems/Problem 12"

(Created page with "== Problem == The number of real values of <math>x</math> which satisfy the equation <cmath>(2^{6x+3})(4^{3x+6})=8^{4x+5}</cmath> is: <math>\text{(A) zero} \qquad \text{(B) on...")
 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The number of real values of <math>x</math> which satisfy the equation <cmath>(2^{6x+3})(4^{3x+6})=8^{4x+5}</cmath> is:
+
The number of real values of <math>x</math> that satisfy the equation <cmath>(2^{6x+3})(4^{3x+6})=8^{4x+5}</cmath> is:
  
 
<math>\text{(A)  zero} \qquad \text{(B)  one} \qquad \text{(C)  two} \qquad \text{(D)  three} \qquad \text{(E)  greater than 3}</math>
 
<math>\text{(A)  zero} \qquad \text{(B)  one} \qquad \text{(C)  two} \qquad \text{(D)  three} \qquad \text{(E)  greater than 3}</math>

Revision as of 21:35, 14 September 2014

Problem

The number of real values of $x$ that satisfy the equation \[(2^{6x+3})(4^{3x+6})=8^{4x+5}\] is:

$\text{(A)  zero} \qquad \text{(B)  one} \qquad \text{(C)  two} \qquad \text{(D)  three} \qquad \text{(E)  greater than 3}$

Solution

See also

1966 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png