Difference between revisions of "2006 USAMO Problems/Problem 6"
5849206328x (talk | contribs) m |
5849206328x (talk | contribs) m (→Solution 1) |
||
Line 9: | Line 9: | ||
<math>BXF=BSF=AXE</math> because <math>BSF</math> tends both arcs <math>AE</math> and <math>BF</math>. | <math>BXF=BSF=AXE</math> because <math>BSF</math> tends both arcs <math>AE</math> and <math>BF</math>. | ||
<math>BFX=XSB=XEA</math> because <math>XSB</math> tends both arcs <math>XA</math> and <math>XB</math>. | <math>BFX=XSB=XEA</math> because <math>XSB</math> tends both arcs <math>XA</math> and <math>XB</math>. | ||
− | Thus, <math>XAE | + | Thus, <math>XAE\sim XBF</math> by AA similarity, and <math>X</math> is the center of spiral similarity for <math>A,E,B,</math> and <math>F</math>. |
<math>FYC=FTC=EYD</math> because <math>FTC</math> tends both arcs <math>ED</math> and <math>FC</math>. | <math>FYC=FTC=EYD</math> because <math>FTC</math> tends both arcs <math>ED</math> and <math>FC</math>. | ||
<math>FCY=FTY=EDY</math> because <math>FTY</math> tends both arcs <math>YF</math> and <math>YE</math>. | <math>FCY=FTY=EDY</math> because <math>FTY</math> tends both arcs <math>YF</math> and <math>YE</math>. | ||
− | Thus, <math>YED | + | Thus, <math>YED\sim YFC</math> by AA similarity, and <math>Y</math> is the center of spiral similarity for <math>E,D,F,</math> and <math>C</math>. |
− | From the similarity, we have that <math>XE/XF=AE/BF</math>. But we are given <math>ED/AE=CF/BF</math>, so multiplying the 2 equations together gets us <math>ED/FC=XE/XF</math>. <math>DEX,CFX</math> are the supplements of <math>AEX, BFX</math>, which are congruent, so <math>DEX=CFX</math>, and so <math>XED | + | From the similarity, we have that <math>XE/XF=AE/BF</math>. But we are given <math>ED/AE=CF/BF</math>, so multiplying the 2 equations together gets us <math>ED/FC=XE/XF</math>. <math>DEX,CFX</math> are the supplements of <math>AEX, BFX</math>, which are congruent, so <math>DEX=CFX</math>, and so <math>XED\sim XFC</math> by SAS similarity, and so <math>X</math> is also the center of spiral similarity for <math>E,D,F,</math> and <math>C</math>. Thus, <math>X</math> and <math>Y</math> are the same point, which all the circumcircles pass through, and so the statement is true. |
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 03:36, 6 August 2014
Contents
Problem
(Zuming Feng, Zhonghao Ye) Let be a quadrilateral, and let and be points on sides and , respectively, such that . Ray meets rays and at and respectively. Prove that the circumcircles of triangles and pass through a common point.
Solutions
Solution 1
Let the intersection of the circumcircles of and be , and let the intersection of the circumcircles of and be .
because tends both arcs and . because tends both arcs and . Thus, by AA similarity, and is the center of spiral similarity for and . because tends both arcs and . because tends both arcs and . Thus, by AA similarity, and is the center of spiral similarity for and .
From the similarity, we have that . But we are given , so multiplying the 2 equations together gets us . are the supplements of , which are congruent, so , and so by SAS similarity, and so is also the center of spiral similarity for and . Thus, and are the same point, which all the circumcircles pass through, and so the statement is true.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See also
- <url>viewtopic.php?t=84559 Discussion on AoPS/MathLinks</url>
2006 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.