Difference between revisions of "1994 AHSME Problems/Problem 9"

(Created page with "==Problem== If <math>\angle A</math> is four times <math>\angle B</math>, and the complement of <math>\angle B</math> is four times the complement of <math>\angle A</math>, then ...")
 
(Solution)
Line 4: Line 4:
 
<math> \textbf{(A)}\ 10^{\circ} \qquad\textbf{(B)}\ 12^{\circ} \qquad\textbf{(C)}\ 15^{\circ} \qquad\textbf{(D)}\ 18^{\circ} \qquad\textbf{(E)}\ 22.5^{\circ} </math>
 
<math> \textbf{(A)}\ 10^{\circ} \qquad\textbf{(B)}\ 12^{\circ} \qquad\textbf{(C)}\ 15^{\circ} \qquad\textbf{(D)}\ 18^{\circ} \qquad\textbf{(E)}\ 22.5^{\circ} </math>
 
==Solution==
 
==Solution==
 +
Let <math>\angle A=x</math> and <math>\angle B=y</math>. From the first condition, we have <math>x=4y</math>. From the second condition, we have <cmath>90-y=4(90-x).</cmath> Substituting <math>x=4y</math> into the previous equation and solving yields <cmath>\begin{align*}90-y=4(90-4y)&\implies 90-y=360-16y\\&\implies 15y=270\\&\implies y=\boxed{\textbf{(D) }18^\circ.}\end{align*}</cmath>
 +
 +
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician]

Revision as of 17:55, 28 June 2014

Problem

If $\angle A$ is four times $\angle B$, and the complement of $\angle B$ is four times the complement of $\angle A$, then $\angle B=$

$\textbf{(A)}\ 10^{\circ} \qquad\textbf{(B)}\ 12^{\circ} \qquad\textbf{(C)}\ 15^{\circ} \qquad\textbf{(D)}\ 18^{\circ} \qquad\textbf{(E)}\ 22.5^{\circ}$

Solution

Let $\angle A=x$ and $\angle B=y$. From the first condition, we have $x=4y$. From the second condition, we have \[90-y=4(90-x).\] Substituting $x=4y$ into the previous equation and solving yields \begin{align*}90-y=4(90-4y)&\implies 90-y=360-16y\\&\implies 15y=270\\&\implies y=\boxed{\textbf{(D) }18^\circ.}\end{align*}

--Solution by TheMaskedMagician