Difference between revisions of "2007 USAMO Problems/Problem 1"
(→Solution 3) |
(→Solution 3) |
||
Line 40: | Line 40: | ||
as desired. | as desired. | ||
− | Let k be the smallest k such that <math>b_k < k</math>. Then <math>b_k = m < k</math>, and <math>S_k = km</math>. To make <math>b_{k+1}</math> an integer, <math>S_{k+1} = S_k + a_{k+1}</math> must be divisible by <math>k+1</math>. Thus, because <math>km + m</math> is divisible by <math>k+1</math>, <math>a_{k+1} \equiv m ( | + | Let k be the smallest k such that <math>b_k < k</math>. Then <math>b_k = m < k</math>, and <math>S_k = km</math>. To make <math>b_{k+1}</math> an integer, <math>S_{k+1} = S_k + a_{k+1}</math> must be divisible by <math>k+1</math>. Thus, because <math>km + m</math> is divisible by <math>k+1</math>, <math>a_{k+1} \equiv m \mod (k+1)</math>, and, because <math>0 \le a_{k+1} < k</math>, <math>a_{k+1} = m</math>. Then <math>b_{k+1} = \frac{(k+1)m}{k+1} = m</math> as well. Repeating the same process using <math>k+1</math> instead of <math>k</math> gives <math>a_{k+2} = m</math>, and an easy induction can prove that for all <math>N > k+1</math>, <math>a_N = m</math>. Thus, <math>a_k</math> becomes a constant function for arbitrarily large values of k. |
== See also == | == See also == |
Revision as of 11:29, 7 June 2014
Problem
Let be a positive integer. Define a sequence by setting and, for each , letting be the unique integer in the range for which is divisible by . For instance, when the obtained sequence is . Prove that for any the sequence eventually becomes constant.
Solution
Solution 1
By the above, we have that
, and by definition, . Thus, . Also, both are integers, so . As the s form a non-increasing sequence of positive integers, they must eventually become constant.
Therefore, for some sufficiently large value of . Then , so eventually the sequence becomes constant.
Solution 2
Let . Since , we have that .
Thus, .
Since , for some integer , we can keep adding to satisfy the conditions, provided that because .
Because , the sequence must eventually become constant.
Solution 3
Define , and . By the problem hypothesis, is an integer valued sequence.
Lemma: The exists a such that .
Proof: Choose any such that . Then: as desired.
Let k be the smallest k such that . Then , and . To make an integer, must be divisible by . Thus, because is divisible by , , and, because , . Then as well. Repeating the same process using instead of gives , and an easy induction can prove that for all , . Thus, becomes a constant function for arbitrarily large values of k.
See also
2007 USAMO (Problems • Resources) | ||
Preceded by First question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.