Difference between revisions of "1989 AHSME Problems/Problem 8"

m
Line 3: Line 3:
 
==Solution==
 
==Solution==
 
For <math>x^2+x-n</math> to factor into a product of two linear factors, we must have <math>x^2+x-n = (x + a)(x + b)</math>, where <math>a</math> and <math>b</math> are integers.
 
For <math>x^2+x-n</math> to factor into a product of two linear factors, we must have <math>x^2+x-n = (x + a)(x + b)</math>, where <math>a</math> and <math>b</math> are integers.
 
  
 
By expansion of the product of the linear factors and comparison to the original quadratic,
 
By expansion of the product of the linear factors and comparison to the original quadratic,
 
  
 
<math>ab = -n</math>
 
<math>ab = -n</math>
  
 
<math>a + b = 1</math>.
 
<math>a + b = 1</math>.
 
  
 
The only way for this to work if <math>n</math> is a positive integer is if <math>a = -b +1</math>.
 
The only way for this to work if <math>n</math> is a positive integer is if <math>a = -b +1</math>.
Line 18: Line 15:
 
Here are the possible pairs:
 
Here are the possible pairs:
 
<center>
 
<center>
 
 
  
 
<math>a = -1, b = 2</math>
 
<math>a = -1, b = 2</math>
  
 
<math>a = -2, b = 3</math>
 
<math>a = -2, b = 3</math>
 
  
 
<math>\vdots</math>
 
<math>\vdots</math>
 
  
 
<math>a = -9, b = 10</math>
 
<math>a = -9, b = 10</math>
Line 34: Line 27:
 
This gives us 9 integers for <math>n</math>, <math>\boxed{\text{D}}</math>.
 
This gives us 9 integers for <math>n</math>, <math>\boxed{\text{D}}</math>.
  
 +
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 }  </math>
  
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 </math>
+
== See also ==
 +
{{AHSME box|year=1989|num-b=7|num-a=9}}   
 +
 
 +
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 06:45, 22 October 2014

Problem

For how many integers $n$ between 1 and 100 does $x^2+x-n$ factor into the product of two linear factors with integer coefficients?

Solution

For $x^2+x-n$ to factor into a product of two linear factors, we must have $x^2+x-n = (x + a)(x + b)$, where $a$ and $b$ are integers.

By expansion of the product of the linear factors and comparison to the original quadratic,

$ab = -n$

$a + b = 1$.

The only way for this to work if $n$ is a positive integer is if $a = -b +1$.


Here are the possible pairs:

$a = -1, b = 2$

$a = -2, b = 3$

$\vdots$

$a = -9, b = 10$

This gives us 9 integers for $n$, $\boxed{\text{D}}$.

$\mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 9 } \qquad \mathrm{(E) \ 10 }$

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png