Difference between revisions of "2014 AIME II Problems/Problem 11"
(→See also) |
(→See also) |
||
Line 9: | Line 9: | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 00:09, 21 May 2014
Problem 11
In ,
and
. $\abs{RD}=1$ (Error compiling LaTeX. Unknown error_msg). Let
be the midpoint of segment
. Point
lies on side
such that
. Extend segment
through
to point
such that
. Then
, where
and
are relatively prime positive integers, and
is a positive integer. Find
.
Solution
Let be the foot of the perpendicular from
to
, so
. Since triangle
is isosceles,
is the midpoint of
, and
. Thus,
is a parallelogram and
. We can then use coordinates. Let
be the foot of altitude
and set
as the origin. Now we notice special right triangles! In particular,
and
, so
,
, and
midpoint
and the slope of
, so the slope of
Instead of finding the equation of the line, we use the definition of slope: for every
to the left, we go
up. Thus,
, and
, so the answer is
.
See also
2014 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.