Difference between revisions of "2014 USAJMO Problems/Problem 2"
Stevenmeow (talk | contribs) (→Solution) |
Stevenmeow (talk | contribs) (→Solution) |
||
Line 71: | Line 71: | ||
Similarly, <math>AC=2s-t</math> | Similarly, <math>AC=2s-t</math> | ||
− | The ratio <math>\frac{[APQ]}{[ABC]}</math> is <math>\frac{AP AQ}{AB AC} = \frac{s^2}{(s+t)(2s-t)}</math> | + | The ratio <math>\frac{[APQ]}{[ABC]-[APQ]}</math> is <math>\frac{AP \cdot AQ}{AB \cdot AC - AP \cdot AQ} = \frac{s^2}{(s+t)(2s-t)-s^2}</math> |
− | The denominator equals <math>(1.5s)^2-(.5s-t)^2</math> where <math>.5s-t</math> can equal any value in <math>(-.5s, .5s)</math> except <math>0</math>. Therefore, the denominator can equal any value in <math>( | + | The denominator equals <math>(1.5s)^2-(.5s-t)^2-s^2</math> where <math>.5s-t</math> can equal any value in <math>(-.5s, .5s)</math> except <math>0</math>. Therefore, the denominator can equal any value in <math>(s^2, 5s^2/4)</math>, and the ratio is any value in <math>\boxed{\left(\frac{4}{5},1\right)}.</math> |
Note: It's easy to show that for any point <math>H</math> on <math>\verline{PQ}</math>, Points B and C can be validly defined to make an acute, non-equilateral triangle | Note: It's easy to show that for any point <math>H</math> on <math>\verline{PQ}</math>, Points B and C can be validly defined to make an acute, non-equilateral triangle |
Revision as of 01:53, 10 May 2014
Problem
Let be a non-equilateral, acute triangle with , and let and denote the circumcenter and orthocenter of , respectively.
(a) Prove that line intersects both segments and .
(b) Line intersects segments and at and , respectively. Denote by and the respective areas of triangle and quadrilateral . Determine the range of possible values for .
Solution
Claim: is the reflection of over the angle bisector of (henceforth 'the' reflection)
Proof: Let be the reflection of , and let be the reflection of .
Then reflection takes to .
is equilateral, and lies on the perpendicular bisector of
It's well known that lies strictly inside , meaning that from which it follows that $\overline{BH'} \perp \verline{AC}$ (Error compiling LaTeX. Unknown error_msg) . Similarly, $\overline{CH'} \perp \verline{AB}$ (Error compiling LaTeX. Unknown error_msg). Since lies on two altitudes, is the orthocenter, as desired.
So is perpendicular to the angle bisector of , which is the same line as the angle bisector of , meaning that is equilateral.
Let its side length be , and let , where because O lies strictly within , as must, the reflection of . Also, it's easy to show that if in a general triangle, it's equlateral, and we know that is not equilateral. Hence . Let intersect at .
Since and are 30-60-90 triangles,
Similarly,
The ratio is The denominator equals where can equal any value in except . Therefore, the denominator can equal any value in , and the ratio is any value in
Note: It's easy to show that for any point on $\verline{PQ}$ (Error compiling LaTeX. Unknown error_msg), Points B and C can be validly defined to make an acute, non-equilateral triangle