Difference between revisions of "2001 AIME I Problems/Problem 12"

(Solution)
(Provided a solution.)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
<center><asy>import three; pointpen = black; pathpen = black+linewidth(0.7); currentprojection = perspective(5,-10,4);
+
<center><asy>import three; pointpen = black; pathpen = black+linewidth(0.7); currentprojection = perspective(-2,9,4);
 
triple A = (6,0,0), B = (0,4,0), C = (0,0,2), D = (0,0,0);
 
triple A = (6,0,0), B = (0,4,0), C = (0,0,2), D = (0,0,0);
triple I = (3/2,1,1/2);
+
triple E = (2/3,0,0), F = (0,2/3,0), G = (0,0,2/3), L = (0,2/3,2/3), M = (2/3,0,2/3), N = (2/3,2/3,0);
draw(C--A--D--C--B--D--I--A--B--I--C);
+
triple I = (2/3,2/3,2/3);
label("$I$",I,S);
+
triple J = (6/7,20/21,26/21);
 +
draw(C--A--D--C--B--D--B--A--C);
 +
draw(L--F--N--E--M--G--L--I--M--I--N--I--J);
 +
label("$I$",I,W);
 
label("$A$",A,S);
 
label("$A$",A,S);
label("$B$",B,E);
+
label("$B$",B,S);
label("$C$",C,N);
+
label("$C$",C,W*-1);
label("$D$",D,W);</asy></center>
+
label("$D$",D,W*-1);</asy></center>
 +
 
 +
The center <math>I</math> of the insphere must be located at <math>(r,r,r)</math> where <math>r</math> is the sphere's radius.
 +
<math>I</math> must also be a distance <math>r</math> from the plane <math>ABC</math>
 +
 
 +
The signed distance between a plane and a point <math>I</math> can be calculated as <math>frac{(I-G) \cdot P}{|P|}</math>, where G is any point on the plane, and P is a vector perpendicular to ABC.
 +
 
 +
A vector <math>P</math> perpendicular to plane <math>ABC</math> can be found as <math>V=(A-C)\times(B-C)=\langle 8, 12, 24 \rangle</math>
 +
 
 +
Thus <math>\frac{(I-C) \cdot P}{|P|}=-r</math> where the negative comes from the fact that we want <math>I</math> to be in the opposite direction of <math>P</math>
 +
 
 +
<cmath>\begin{align*}\frac{(I-C) \cdot P}{|P|}&=-r\\
 +
\frac{(\langle r, r, r \rangle-\langle 0, 0, 2 \rangle) \cdot P}{|P|}&=-r\\
 +
\frac{\langle r, r, r-2 \rangle \cdot \langle 8, 12, 24 \rangle}{\langle 8, 12, 24 \rangle}&=-r\\
 +
\frac{44r -48}{28}&=-r\\
 +
44r-48&=-28r\\
 +
72r&=48\\
 +
r&=\frac{2}{3}
 +
\end{align*}</cmath>
 +
 
 +
 
 +
Finally <math>2+3=\boxed{005}</math>
  
 
== See also ==
 
== See also ==

Revision as of 15:11, 8 May 2014

Problem

A sphere is inscribed in the tetrahedron whose vertices are $A = (6,0,0), B = (0,4,0), C = (0,0,2),$ and $D = (0,0,0).$ The radius of the sphere is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

Solution

[asy]import three; pointpen = black; pathpen = black+linewidth(0.7); currentprojection = perspective(-2,9,4); triple A = (6,0,0), B = (0,4,0), C = (0,0,2), D = (0,0,0); triple E = (2/3,0,0), F = (0,2/3,0), G = (0,0,2/3), L = (0,2/3,2/3), M = (2/3,0,2/3), N = (2/3,2/3,0); triple I = (2/3,2/3,2/3); triple J = (6/7,20/21,26/21); draw(C--A--D--C--B--D--B--A--C); draw(L--F--N--E--M--G--L--I--M--I--N--I--J); label("$I$",I,W); label("$A$",A,S); label("$B$",B,S); label("$C$",C,W*-1); label("$D$",D,W*-1);[/asy]

The center $I$ of the insphere must be located at $(r,r,r)$ where $r$ is the sphere's radius. $I$ must also be a distance $r$ from the plane $ABC$

The signed distance between a plane and a point $I$ can be calculated as $frac{(I-G) \cdot P}{|P|}$, where G is any point on the plane, and P is a vector perpendicular to ABC.

A vector $P$ perpendicular to plane $ABC$ can be found as $V=(A-C)\times(B-C)=\langle 8, 12, 24 \rangle$

Thus $\frac{(I-C) \cdot P}{|P|}=-r$ where the negative comes from the fact that we want $I$ to be in the opposite direction of $P$

\begin{align*}\frac{(I-C) \cdot P}{|P|}&=-r\\ \frac{(\langle r, r, r \rangle-\langle 0, 0, 2 \rangle) \cdot P}{|P|}&=-r\\ \frac{\langle r, r, r-2 \rangle \cdot \langle 8, 12, 24 \rangle}{\langle 8, 12, 24 \rangle}&=-r\\ \frac{44r -48}{28}&=-r\\ 44r-48&=-28r\\ 72r&=48\\ r&=\frac{2}{3} \end{align*}


Finally $2+3=\boxed{005}$

See also

  • <url>viewtopic.php?p=384205#384205 Discussion on AoPS</url>
2001 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png